Skip to main content
Log in

High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin–Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen DK, Ohlrogge JB, Shachar HY (2009) The role of light in soybean seed filling metabolism. Plant J 58:220–234

    Article  CAS  PubMed  Google Scholar 

  • Alonso AP, Goffman FD, Ohlrogge JB, Shachar HY (2007) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52:296–308

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem J 280:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Borek S, Pukacka S, Michalski K, Ratajczak L (2009) Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet. J Exp Bot 60:3453–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182:17–30

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Rolletschek H, Walenta S, Panitz R, Wobus U, Weber H (2003) Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity. Plant J 36:318–329

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Nguyen TH, Neuberger T, Rutten T, Tschiersch H, Claus B, Feussner I, Webb AG, Jakob P, Weber H (2005) Gradients of lipid storage, photosynthesis, plastid differentiation in developing soybean seeds. New Phytol 167:761–776

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2008) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386

    Article  Google Scholar 

  • Borisjuk L, Neuberger T, Schwender JOR, Heinzel N, Sunderhaus S, Fuchs J, Hay JO, Tschiersch H, Braun HP, Denolf P, Lambert B, Jakob PM, Rolletschek H (2013) Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brand AR, Barbosa HS, Arruda M (2010) Image analysis of two-dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds. J Proteomics 73:1433–1440

    Article  Google Scholar 

  • Brown AP, Kroon JTM, Topping JF, Robson JL, Simon WJ, Slabas AR (2011) Components of complex lipid biosynthetic pathways in developing castor (Ricinus communis) seeds identified by MudPIT analysis of enriched endoplasmic reticulum. J Proteome Res 10:3565–3577

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake BA, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser LCM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Biol 47:273–298

    Article  CAS  Google Scholar 

  • Dyer JH, Ryu SB, Wang X (1994) Multiple forms of phospholipase D following germination and during leaf development of castor bean. Plant Physiol 105:715–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655

    Article  CAS  PubMed  Google Scholar 

  • Eastmond P, Kolacna L, Rawsthorne S (1996) Photosynthesis by developing embryos of oilseed rape (Brassica napus L). J Exp Bot 47:1763–1769

    Article  CAS  Google Scholar 

  • Ekman Å, Hayden DM, Dehesh K, Bülow L, Stymne S (2008) Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds. J Exp Bot 59:4247–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furbank RT, White R, Palta JA, Turner NC (2004) Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat, and embryo. J Exp Bot 55:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber AP, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476:472–475

    Article  CAS  PubMed  Google Scholar 

  • Goffman FD, Alonso AP, Schwender J, Shachar HY, Ohlrogge JB (2005) Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol 138:1619–1629

    Article  Google Scholar 

  • Hajduch M, Matusova R, Houston NL, Thelen JJ (2011) Comparative proteomics of seed maturation in oilseeds reveals differences in intermediary metabolism. Proteomics 11:1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhang S, Cao K (2012) Evidence for leaf fold to remedy the deficiency of physiological photoprotection for photosystem II. Photosynth Res 110:185–191

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans 28:959–960

    Article  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang F, Rawsthorne S (1996) Metabolism of glucose-6-phosphate and utilization of multiple metabolites for fatty acid synthesis by plastids from developing oilseed rape embryos. Planta 199:321–327

    Article  CAS  Google Scholar 

  • Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  PubMed  Google Scholar 

  • Qiu LJ, Yang C, Tian B, Yang JB, Liu AZ (2010) Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol 10:278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196

    Article  CAS  PubMed  Google Scholar 

  • Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu XY, Melake BA, Creasy HH, Puiu D, Rosovitz MJ, Khouri HM, Beckstrom SSM, Allan GJ, Keim P, Ravel J, Rabinowicz PD (2011) Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS One 6:e217437

    Article  Google Scholar 

  • Rolletschek H, Weber H, Borisjuk L (2003) Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes. Plant Physiol 132:1196–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolletschek H, Radchuk R, Klukas C, Schreiber F, Wobus U, Borisjuk L (2005) Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytol 167:777–786

    Article  CAS  PubMed  Google Scholar 

  • Rosche E, Blackmore D, Tegeder M, Richardson T, Schroeder H, Higgins T, Frommer WB, Offler CE, Patrick JW (2002) Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J 30:165–175

    Article  CAS  PubMed  Google Scholar 

  • Roughan PG (1995) Acetate concentrations in leaves are sufficient to drive in vivo fatty acid synthesis at maximum rates. Plant Sci 107:49–55

    Article  CAS  Google Scholar 

  • Roughan PG, Holland R, Slack CR (1979) Acetate is the preferred substrate for long-chain fatty acid synthesis in isolated spinach chloroplasts. Biochem J 184:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz V, Da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100

    Article  CAS  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar HY (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  CAS  PubMed  Google Scholar 

  • Smith RG, Gauthier DA, Dennis DT, Turpin DH (1992) Malate- and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol 98:1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Amer J Physiol-Endoc M 296:E1195–E1209

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschiersch H, Borisjuk L, Rutten T, Rolletschek H (2011) Gradients of seed photosynthesis and its role for oxygen balancing. Biosystems 103:302–308

    Article  CAS  PubMed  Google Scholar 

  • Vigeolas H, Geigenberger P (2004) Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta 219:827–835

    Article  CAS  PubMed  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  CAS  PubMed  Google Scholar 

  • Wakao S, Andre C, Benning C (2008) Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol 146:277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu R, Wang R, Liu A (2012) Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L.) seeds at two developmental stages. BMC Genom 13:716

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wen B, Wang R, Song S (2009) Cytological and physiological changes related to cryotolerance in orthodox maize embryos during seed development. Protoplasma 236:29–37

    Article  CAS  PubMed  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood JL (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878

    Article  CAS  PubMed  Google Scholar 

  • Xu RH, Wang RL, Liu AZ (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenerg 35:1683–1692

    Article  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Govindjee Baker NR, DeSturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223:114–133

    Article  CAS  PubMed  Google Scholar 

  • Zilkey BF, Canvin DT (1971) Localization of oleic acid biosynthesis enzymes in the proplastids of developing castor endosperm. Can J Bot 50:323–326

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Xuewei Fu for his assistance with the Imaging-PAM system and Dr. Wei Huang for his assistance in gas exchange measurements using the LI-6400 photosynthesis system. We are grateful to Prof. G. Seiler, USDA-ARS, Fargo, USA, for critical reading and editing the manuscript. This work was financially supported by the National Key Technology R&D Program (2015BAD15B02), the NSFC grants (31401421 and 31501034) and TWAS-CAS fellowship (to SM).

Author contribution

YZ carried out the experiment and analyzed the transcriptome data. SM participated in the experiment and data analyses. AL conceived of the study and participated in its design, data analyses, and coordination. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhong Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Mulpuri, S. & Liu, A. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. Photosynth Res 128, 125–140 (2016). https://doi.org/10.1007/s11120-015-0206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0206-x

Keywords

Navigation