Skip to main content

Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna–Matthews–Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

BChl:

Bacteriochlorophyll

C.:

Chlorobaculum

Cfx.:

Chloroflexus

CSM:

Chlorosome

FMO:

Fenna–Matthews–Olson protein

GSB:

Green sulfur bacteria

gRC:

Reaction center of green sulfur bacteria

PSI RC:

Reaction center of photosystem 1 of oxygenic photosynthesis

RC:

Reaction center

TEM:

Transmission electron microscopy

References

  • Bina D, Blankenship RE (2013) Chemical oxidation of the FMO antenna protein from Chlorobaculum tepidum. Photosynth Res 116:11–19

    Article  CAS  PubMed  Google Scholar 

  • Bina D, Gardian Z, Litvin R, Vacha F (2014) Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus. Photosynth Res 122:13–21

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley-Blackwell, Oxford, pp 79–82

    Google Scholar 

  • Blankenship RE, Feick R, Bruce BD, Kirmaier C, Holten D, Fuller RC (1983) Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. J Cell Biochem 22:1097–4644

    Article  Google Scholar 

  • Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526

    Article  CAS  PubMed  Google Scholar 

  • Cartron ML, Olsen JD, Sener M, Jackson PJ, Brindley AA, Qian P, Dickman MJ, Leggett GJ, Schulten K, Hunter CN (2014) Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochim Biophys Acta 1837:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauter Z, Wilson KS, Sieker LC, Meyer J, Moulis JM (1997) Atomic resolution (0.94 Å) structure of Clostridium acidurici ferredoxin. Detailed geometry of [4fe-4 s] clusters in a protein. Biochemistry 36:16065–16073

    Article  CAS  PubMed  Google Scholar 

  • Dostal J, Vacha F, Psencik J, Zigmantas D (2014) 2D electronic spectroscopy reveals excitonic structure in the baseplate of a chlorosome. J Phys Chem Lett 5:1743–1747

    Article  CAS  PubMed  Google Scholar 

  • Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573–577

    Article  CAS  Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279:2063–2068

    Article  CAS  PubMed  Google Scholar 

  • Frank J, Radermacher M, Penczek P, Zhu J, Li YH, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Bryant DA (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria. In: Shively JM (ed) Microbiology monographs, vol 2., Complex intracellular structures in prokaryotes. Springer, Berlin, pp 79–114

    Google Scholar 

  • Frigaard N-U, Chew AGM, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117

    Article  CAS  PubMed  Google Scholar 

  • Golecki JR, Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148:236–241

    Article  CAS  Google Scholar 

  • Griesbeck C, Hager-Braun C, Rogl H, Hauska G (1998) Quantitation of P840 reaction center preparations from Chlorobium tepidum: chlorophylls and FMO-protein. Biochim Biophys Acta 1365:285–293

    Article  CAS  Google Scholar 

  • Harauz G, Boekema EJ, van Heel M (1988) Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol 164:35–49

    Article  CAS  PubMed  Google Scholar 

  • Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  CAS  PubMed  Google Scholar 

  • He G, Zhang H, King JD, Blankenship RE (2014) Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry 53:4924–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007a) Variable fluorescence in green sulfur bacteria. Biochim Biophys Acta 1767:106–113

    Article  CAS  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007b) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803

    Article  CAS  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE, Roberson RW (2005) The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kudryashev M, Aktoudianaki A, Dedoglou D, Stahlberg H, Tsiotis G (2014) The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography. Biochim Biophys Acta 1837:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  CAS  PubMed  Google Scholar 

  • Majumder ELW, Olsen JD, Qian P, Collins AM, Hunter CN, Blankenship RE (2015) Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii. Photosynth Res. doi:10.1007/s11120-015-0179-9

    PubMed  Google Scholar 

  • Oelze J, Golecki JR (1995) Membrane and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria, vol 2. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 259–272

    Chapter  Google Scholar 

  • Olbrich C, Jansen TLC, Liebers J, Aghtar M, Strumpfer J, Schulten K, Knoester J, Kleinekathofer U (2011) From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. J Phys Chem B 115:8609–8621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orf GS, Blankenship RE (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MO, Linnanto J, Frigaard NU, Nielsen NC, Miller M (2010) A model of the protein pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243

    Article  CAS  PubMed  Google Scholar 

  • Psencik J, Butcher SJ, Tuma R (2014) Chlorosomes: structure, function and assembly. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Advances in photosynthesis and respiration, vol 39. Springer, New York, pp 77–109

    Chapter  Google Scholar 

  • Remigy H, Fotiadis D, Hauska G, Wolpensinger B, Muller SA, Engel A, Tsiotis G (1998) Evidence for the association of three FMO subunits per reaction center of Chlorobium tepidum by scanning transmission electron microscopy. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 1. Kluwer Academic Publishers, Dordrecht, pp 125–128

    Google Scholar 

  • Remigy HW, Stahlberg H, Fotiadis D, Müller SA, Wolpensinger B, Engel A, Hauska G, Tsiotis G (1999) The reaction center complex from the green sulfur bacterium Chlorobium tepidum: a structural analysis by scanning transmission electron microscopy. J Mol Biol 290:851–858

    Article  CAS  PubMed  Google Scholar 

  • Remigy HW, Hauska G, Muller SA, Tsiotis G (2002) The reaction centre from green sulfur bacteria: progress towards structural elucidation. Photosynth Res 71:91–98

    Article  CAS  PubMed  Google Scholar 

  • Scheres SHW (2012a) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres SHW (2012b) A Bayesian view on Cryo-EM structure determination. J Mol Biol 415:406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuring S, Levy D, Rigaud J-L (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712:109–127

    Article  CAS  PubMed  Google Scholar 

  • Schmidt am Busch M, Muh F, Madjet ME, Renger T (2011) The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J Phys Chem Lett 2:93–98

    Article  CAS  PubMed  Google Scholar 

  • Seo D, Tomioka A, Kusumoto N, Kamo M, Enami I, Sakurai H (2001) Purification of ferredoxins and their reaction with purifed reaction center complex from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1503:377–384

    Article  CAS  PubMed  Google Scholar 

  • Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3:1941–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague SG, Staehelin LA, Dibartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1021–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swarthoff T, Amesz J (1979) Photochemically active pigment-protein complexes from the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 548:427–432

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE, Schmid MF, Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188:443–454

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE, Wen J, Gay L, Blankenship RE (2009) The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res 100:79–87

    Article  CAS  PubMed  Google Scholar 

  • Tsiotis G, Hager-Braun C, Wolpensinger B, Engel A, Hauska G (1997) Structural analysis of the reaction center from green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1322:163–172

    Article  CAS  Google Scholar 

  • Tsukatani Y, Miyamoto R, Itoh S, Oh-oka H (2004) Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation - Regulation of energy transfer and ferredoxin-mediated NADP(+) reduction on the cytoplasmic side. J Biol Chem 279:51122–51130

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Wen JZ, Blankenship RE, Bryant DA (2010) Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Photosynth Res 104:201–209

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 259–272

    Google Scholar 

  • van Heel M, Frank J (1981) Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6:187–194

    PubMed  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot-springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    Article  CAS  Google Scholar 

  • Wen J, Zhang H, Gross ML, Bankenship RE (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106:16134–16139

    Google Scholar 

  • Wen J, Zhang H, Gross ML, Blankenship RE (2011) Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO antenna protein. Biochemistry 50:3502–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmershaus BP, Brune DC, Blankenship RE (1988) Energy transfer in Chloroflexus aurantiacus: effects of temperature and anaerobic conditions. In: Scheer H, Schneider S (eds) Photosynthetic light-harvesting systems. Walter de Gruyter, Berlin, pp 543–554

    Google Scholar 

  • Zhou W, LoBrutto R, Lin S, Blankenship RE (1994) Redox effects on the bacteriochlorophyll a-containing Fenna–Matthews–Olson protein from Chlorobium tepidum. Photosynth Res 41:89–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Jakub Pšenčík (Charles University in Prague) for fruitful discussions and to Dr. Gregory Orf and Dr. Robert Blankenship (Washington University in St. Louis) for critical reading of the manuscript. The research was supported by Czech Science Foundation project P501/12/G055 and institutional support RVO:60077344. Skilled technical assistance of František Matoušek is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bína.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bína, D., Gardian, Z., Vácha, F. et al. Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study. Photosynth Res 128, 93–102 (2016). https://doi.org/10.1007/s11120-015-0205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0205-y

Keywords

  • FMO (Fenna–Matthews–Olson protein)
  • Chlorosome
  • Light-harvesting complex
  • Reaction center
  • Electron microscopy
  • Green sulfur bacteria