Photosynthesis Research

, Volume 127, Issue 2, pp 219–235 | Cite as

Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions

  • Fedor I. KuzminovEmail author
  • Maxim Y. Gorbunov
Original Article


To prevent photooxidative damage under supraoptimal light, photosynthetic organisms evolved mechanisms to thermally dissipate excess absorbed energy, known as non-photochemical quenching (NPQ). Here we quantify NPQ-induced alterations in light-harvesting processes and photochemical reactions in Photosystem 2 (PS2) in the pennate diatom Phaeodactylum tricornutum. Using a combination of picosecond lifetime analysis and variable fluorescence technique, we examined the dynamics of NPQ activation upon transition from dark to high light. Our analysis revealed that NPQ activation starts with a 2–3-fold increase in the rate constant of non-radiative charge recombination in the reaction center (RC); however, this increase is compensated with a proportional increase in the rate constant of back reactions. The resulting alterations in photochemical processes in PS2 RC do not contribute directly to quenching of antenna excitons by the RC, but favor non-radiative dissipation pathways within the RC, reducing the yields of spin conversion of the RC chlorophyll to the triplet state. The NPQ-induced changes in the RC are followed by a gradual ~ 2.5-fold increase in the yields of thermal dissipation in light-harvesting complexes. Our data suggest that thermal dissipation in light-harvesting complexes is the major sink for NPQ; RCs are not directly involved in the NPQ process, but could contribute to photoprotection via reduction in the probability of 3Chl formation.


Non-photochemical quenching Diatoms Photosystem 2 Reaction center Light-harvesting complex Photosynthetic energy transfer 



Diatom algae Phaeodactylum tricornutum (CCMP 632)


Diatom algae Phaeodactylum tricornutum (UTEX 646)








Fluorescence Induction and Relaxation

PS1 (PS2)

Photosystem 1 (photosystem 2)


Reaction center


Fucoxanthin chlorophyll a/c-binding Protein


Light-harvesting proteins that belong to LI818/Lhcsr protein family and act as modulators of NPQ (Goss and Lepetit 2015)


Xanthophyll cycle


Minimum yield of fluorescence at open PS2 RC in the dark-adapted cells


Maximum yield of fluorescence at closed PS2 RC in the dark-adapted cells


Maximum PS2 photochemical efficiency in the dark [=(F M − F o)/F M]

\( F_{\text{M}}^{\text{NPQ}} \)

Maximum yield of fluorescence at closed PS2 RC in cells after exposure to prolonged illumination

\( F_{\text{M}}^{\text{I}} \)

Maximum yield of fluorescence at closed PS2 RC in photoinhibited cells (e.g., with damaged RCs)


Non-photochemical quenching parameter [\( = (F_{M} - F_{\text{M}}^{\text{NPQ}} )/F_{\text{M}}^{\text{NPQ}} \)]


Functional absorption cross section of PS2

P680, P

Primary donor of the PS2 RC


Intermediate acceptor of PS2 RC (phaeophytin)


Radical pair


Triplet chlorophyll



F.K.’s work on the development of the models for fluorescence signal formation was supported by the grant from the Russian Science Foundation (Grant #14-17-00451). M.G acknowledges support from Environmental Security and Technology Certification Program (Project #RC-201202), the National Aeronautics and Space Administration Ocean Biology and Biogeochemistry Program (Grant #NNX08AC24G).

Supplementary material

11120_2015_180_MOESM1_ESM.docx (317 kb)
Supplementary material 1 (DOCX 317 kb)


  1. Bailleul B, Rogato A, De Martino A et al (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci 107:18214–18219PubMedPubMedCentralCrossRefGoogle Scholar
  2. Brunet C, Lavaud J (2010) Can the xanthophyll cycle help extract the essence of the microalgal functional response to a variable light environment? J Plankton Res 32:1609–1617. doi: 10.1093/plankt/fbq104 CrossRefGoogle Scholar
  3. Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103. doi: 10.1016/j.bpj.2011.03.049 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chukhutsina VU, Büchel C, Amerongen HV (2013) Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions. Biochim Biophys Acta 1827:10–18. doi: 10.1016/j.bbabio.2012.09.015 PubMedCrossRefGoogle Scholar
  5. Chukhutsina VU, Büchel C, van Amerongen H (2014) UNCORRECTED PROOF. Biochimica et Biophysica Acta. doi: 10.1016/j.bbabio.2014.02.021 PubMedGoogle Scholar
  6. Eisenstadt D, Ohad I, Keren N, Kaplan A (2008) Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutumresult in non-photochemical fluorescence quenching. Environ Microbiol 10:1997–2007. doi: 10.1111/j.1462-2920.2008.01616.x PubMedCrossRefGoogle Scholar
  7. El Bissati K, Kirilovsky D, Delphin E et al (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochimica et Biophysica Acta 1457:229–242PubMedCrossRefGoogle Scholar
  8. Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Optics Communications 134:371–378. doi: 10.1016/S0030-4018(96)00384-7 CrossRefGoogle Scholar
  9. Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14. doi: 10.1111/j.0022-3646.1991.00008.x CrossRefGoogle Scholar
  10. Falkowski PG, Raven JA (2007) Aquat Photosyn. doi: 10.1371/journal.pone.0030167 Google Scholar
  11. Falkowski PG, Green R, Kolber ZS (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. pp 409–434Google Scholar
  12. Genty B, Harbinson J, Briantais J-M, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosyn Res 25:249–257PubMedCrossRefGoogle Scholar
  13. Gorbunov MY, Falkowski PG (2005) Fluorescence Induction and Relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In: Fundamental Photosynthesis (ed) van der Est A, Bruce D. International Society of Photosynthesis, Aspects to Global Perspectives, pp 1029–1031Google Scholar
  14. Gorbunov MY, Kuzminov FI, Fadeev VV et al (2011) A kinetic model of non-photochemical quenching in cyanobacteria. Biochimica et Biophysica Acta 1807:1591–1599. doi: 10.1016/j.bbabio.2011.08.009 PubMedCrossRefGoogle Scholar
  15. Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosyn Res 106:103–122. doi: 10.1007/s11120-010-9536-x PubMedCrossRefGoogle Scholar
  16. Goss R, Lepetit B (2015) Journal of Plant Physiology. J Plant Physiol 172:13–32. doi: 10.1016/j.jplph.2014.03.004 PubMedCrossRefGoogle Scholar
  17. Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052. doi: 10.1016/j.bbabio.2012.03.008 PubMedCrossRefGoogle Scholar
  18. Holzwarth AR, Müller MG, Reus M et al (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci 103:6895–6900PubMedPubMedCentralCrossRefGoogle Scholar
  19. Horton P, Ruban AV, Walters RG (1996) REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol 47:655–684. doi: 10.1146/annurev.arplant.47.1.655 PubMedCrossRefGoogle Scholar
  20. Ivanov AG, Hurry V, Sane PV et al (2008a) Reaction centre quenching of excess light energy and photoprotection of photosystem II. Journal of Plant Biology 51:85–96. doi: 10.1007/BF03030716 CrossRefGoogle Scholar
  21. Ivanov AG, Sane PV, Hurry V et al (2008b) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosyn Res 98:565–574. doi: 10.1007/s11120-008-9365-3 PubMedCrossRefGoogle Scholar
  22. Jeffery SW, Leroi JM (1997) Simple procedures for growing SCOR reference microalgal cultures. In: Jeffery SW, Mantoura RFC, Wright SW (eds) Plankton Pigments in Oceanography; Monographs on Oceanographic Methodology. … oceanographic methods. UNESCO, pp 181–205Google Scholar
  23. Joliot A, Joliot P (1964) Etude cinetique de la reaction photochimique liberant loxygene au cours de la photosynthese. C R Acad Sci Paris 258:4622–4625PubMedGoogle Scholar
  24. Kirilovsky D, Kerfeld CA (2013) The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem Photobiol Sci 12:1135–1143. doi: 10.1039/c3pp25406b PubMedCrossRefGoogle Scholar
  25. Kolber ZS, Prásil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta 1367:88–106PubMedCrossRefGoogle Scholar
  26. Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosyn Res 98:551–564. doi: 10.1007/s11120-008-9349-3 PubMedCrossRefGoogle Scholar
  27. Ku HH (1966) Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation 70C:263. doi: 10.6028/jres.070c.025 Google Scholar
  28. Lakowicz JR (2007) Principles of Fluorescence Spectroscopy, Third Edition. 1–960Google Scholar
  29. Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim Biophys Acta 1817:760–769. doi: 10.1016/j.bbabio.2012.02.002 PubMedCrossRefGoogle Scholar
  30. Lavaud J, Rousseau B, Etienne A-L (2002) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166PubMedCrossRefGoogle Scholar
  31. Lavaud J, Materna AC, Sturm S et al (2012) Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching. PLoS ONE 7:e36806. doi: 10.1371/journal.pone.0036806.t003 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lee HY, Hong YN, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta 212:332–342PubMedCrossRefGoogle Scholar
  33. Lepetit B, Sturm S, Rogato A et al (2013) High light acclimation in the secondary plastids containing diatom phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865. doi: 10.1104/pp.112.207811 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Li XP, Björkman O, Shih C et al (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi: 10.1038/35000131 PubMedCrossRefGoogle Scholar
  35. Matsubara S, Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci 101:18234–18239. doi: 10.1073/pnas.0403857102 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Miloslavina Y, Grouneva I, Lambrev PH et al (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochimica et Biophysica Acta 1787:1189–1197. doi: 10.1016/j.bbabio.2009.05.012 PubMedCrossRefGoogle Scholar
  37. Moya I, Hodges M, Briantais JM, Hervo G (1986) Evidence That the Variable Chlorophyll Fluorescence in Chlamydomonas-Reinhardtii Is Not Recombination Luminescence. Photosyn Res 10:319–325. doi: 10.1007/BF00118297 PubMedCrossRefGoogle Scholar
  38. Müller P, Li X-P, Niyogi KK (2001) Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol 125:1558–1566. doi: 10.1104/pp.125.4.1558 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Nelson DM, Tréguer P, Brzezinski MA et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372. doi: 10.1029/95gb01070 CrossRefGoogle Scholar
  40. Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314. doi: 10.1016/j.pbi.2013.03.011 PubMedCrossRefGoogle Scholar
  41. Olaizola M, La Roche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosyn Res 41:357–370. doi: 10.1007/BF00019413 PubMedCrossRefGoogle Scholar
  42. Peers G, Truong TB, Ostendorf E et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521. doi: 10.1038/nature08587 PubMedCrossRefGoogle Scholar
  43. Rehman AU, Cser K, Sass L, Vass I (2013) Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. Biochim Biophys Acta 1827:689–698. doi: 10.1016/j.bbabio.2013.02.016 PubMedCrossRefGoogle Scholar
  44. Roelofs TA, Lee CH, Holzwarth AR (1992) Global Target Analysis of Picosecond Chlorophyll Fluorescence Kinetics From Pea-Chloroplasts - a New Approach to the Characterization of the Primary Processes in Photosystem-Ii Alpha-Units and Beta-Units. Biophys J 61:1147–1163PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ruban AV, Lavaud J, Rousseau B et al (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosyn Res 82:165–175. doi: 10.1007/s11120-004-1456-1 PubMedCrossRefGoogle Scholar
  46. Schatz GH, Brock H, Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci 84:8414–8418PubMedPubMedCentralCrossRefGoogle Scholar
  47. Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  48. Schweitzer RH, Brudvig GW (1997) Fluorescence quenching by chlorophyll cations in photosystem II. Biochemistry 36:11351–11359. doi: 10.1021/bi9709203 PubMedCrossRefGoogle Scholar
  49. van Oort B, Amunts A, Borst JW et al (2008) Picosecond Fluorescence of Intact and Dissolved PSI-LHCI Crystals. Biophys J 95:5851–5861. doi: 10.1529/biophysj.108.140467 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205. doi: 10.1016/j.tplants.2009.01.009 PubMedCrossRefGoogle Scholar
  51. Wagner B, Goss R, Richter M et al (1996) Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids different localization of zeaxanthin dependent and independent quenching mechanisms. J Photochem Photobiol, B 36:339–350. doi: 10.1016/S1011-1344(96)07391-5 CrossRefGoogle Scholar
  52. Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem. doi: 10.1351/pac197951030639 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA
  2. 2.International Laser CenterM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations