Ananyev G, Dismukes GC (2005) How fast can Photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res 84:355–365
CAS
Article
PubMed
Google Scholar
Bockris JOM (2002) The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. Int J Hydrog Energy 27:731–740
CAS
Article
Google Scholar
Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975
CAS
Article
Google Scholar
Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252:444–455
PubMed Central
CAS
Article
PubMed
Google Scholar
Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4−cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943
CAS
Article
PubMed
Google Scholar
El-Deab MS, Awad MI, Mohammad AM, Ohsaka T (2007) Enhanced water electrolysis: electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem Commun 9:2082–2087
CAS
Article
Google Scholar
Glikman TS, Shcheglova IS (1968) Water oxidation by Mn oxide. Kinetikai Kataliz 9:461–480
CAS
Google Scholar
Gorlin Y, Chung CJ, Benck JD, Nordlund D, Seitz L, Weng TC, Sokaras D, Clemens BM, Jaramillo TF (2014) Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J Am Chem Soc 136:4920–4926
PubMed Central
CAS
Article
PubMed
Google Scholar
Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 84:2795–2806
CAS
Article
Google Scholar
Hocking RK, Brimblecombe R, Chang L-Y, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–466
CAS
PubMed
Google Scholar
Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136:6002–6010
CAS
Article
PubMed
Google Scholar
Iyer Y, Del-Pilar J, Kithongo King’ondu C, Kissel E, Fabian Garces H, Huang H, El-Sawy AM, Dutta PK, Suib SL (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116:6474–6483
CAS
Article
Google Scholar
Jiao F, Frei H (2010a) Nanostructured manganese oxide clusters supported on mesoporous silicaas efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922
CAS
Article
Google Scholar
Jiao F, Frei H (2010b) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3:1018–1027
Khan M, Suljoti E, Singh A, Bonke SA, Brandenburg T, Atak K, Golnak R, Spiccia L, Aziz F (2014) Electronic structural insights into efficient MnOx catalysts. J Mater Chem A 2:18199–18203
CAS
Article
Google Scholar
Kuo CH, Li W, Pahalagedar LAM, El-Sawy AM, Kriz D, Genz N, Guild C, Ressler T, Suib SL, He J (2014) Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions. Angew Chem Int Ed 54:2345–2350
Article
Google Scholar
Meng Y, Song W, Huang H, Ren Z, Chen S-Y, Suib SL (2014) Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464
CAS
Article
PubMed
Google Scholar
Mohammad AM, Awad MI, El-Deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta 53:4351–4358
CAS
Article
Google Scholar
Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328
CAS
Article
Google Scholar
Najafpour MM (2011a) Mixed-valence manganese calcium oxides as efficient catalysts for water oxidation. Dalton Trans 40:3793–3795
CAS
Article
PubMed
Google Scholar
Najafpour MM (2011b) A soluble form of nano-sized colloidal manganese(IV) oxide as an efficient catalyst for water oxidation. Dalton Trans 40:3805–3807
Najafpour MM, McKee V (2010) A dinuclear manganese(II) complex with 2,6-pyridinedicarboxylate: preparation, crystal structure and oxygen evolution activity in the presence of oxone. Catal Commun 11:1032–1035
CAS
Article
Google Scholar
Najafpour MM, Nemati Moghaddam A (2012) Amorphous manganese oxide-coated montmorillonite as an efficient catalyst for water oxidation. New J Chem 36:2514–2519
CAS
Article
Google Scholar
Najafpour MM, Pashaei B (2012) Nanoscale manganese oxide within Faujasite zeolite as an efficient and biomimetic water oxidizing catalyst. Dalton Trans 41:10156–10160
CAS
Article
PubMed
Google Scholar
Najafpour MM, Sedigh DJ (2013) Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 42:12173–12178
CAS
Article
PubMed
Google Scholar
Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237
CAS
Article
Google Scholar
Najafpour MM, Kozlevčar B, McKeeV Jagličić Z, Jagodič M (2011a) The first pentanuclear heterobimetallic coordination cation with CeIII, CeIV and MnII. Inorg Chem Commun 14:125–127
Najafpour MM, Nayeri S, Pashaei B (2011b) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378
CAS
Article
PubMed
Google Scholar
Najafpour MM, Nayeri S, Pashaei B (2012a) Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation. Dalton Trans 41:4799–4805
CAS
Article
PubMed
Google Scholar
Najafpour MM, Pashaei B, Nayeri S (2012b) Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Trans 41:7134–7140
Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M (2012c) A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans 41:11026–11031
CAS
Article
PubMed
Google Scholar
Najafpour MM, Rahimi F, Aro E-M, Lee C-H, Allakhverdiev SI (2012d) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J Royal Soc Inter 9:2383–2395
CAS
Article
Google Scholar
Najafpour MM, Amouzadeh Tabrizi M, Haghighi B, Govindjee (2012e) A manganese oxide with phenol groups as a promising structural model for water oxidizing complex in Photosystem II: a ‘golden fish’. Dalton Trans 41:3906–3910
CAS
Article
PubMed
Google Scholar
Najafpour MM, Haghighi B, Zarei Ghobadi M, Jafarian Sedigh D (2013a) Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chem Commun 49:8824–8826
CAS
Article
Google Scholar
Najafpour MM, Haghighi B, Sedigh DJ, Ghobadi MZ (2013b) Conversions of Mn oxides to nanolayered Mn oxide in electrochemical water oxidation at near neutral pH, all to a better catalyst: catalyst evolution. Dalton Trans 42:16683–16686
CAS
Article
PubMed
Google Scholar
Najafpour MM, Jafarian Sedigh D, Pashaeia B, Nayeri S (2013c) Water oxidation by nano-layered manganese oxides in the presence of cerium(IV) ammonium nitrate: important factors and a proposed self-repair mechanism. New J Chem 37:2448–2459
CAS
Article
Google Scholar
Najafpour MM, Kompany-Zareh M, Zahraei A, Jafarian Sedigh D, Jaccard H, Khoshkam M, Britt RD, Casey W (2013d) Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Trans 42:14603–14611
CAS
Article
PubMed
Google Scholar
Najafpour MM, Rahimi F, Jafarian Sedigh D, Carpentier R, Eaton-Rye JJ, Shen JR, Allakhverdiev SI (2013e) Gold or silver deposited on layered manganese oxide: a functional model for the water-oxidizing complex in photosystem II. Photosynth Res 117:423–429
CAS
Article
PubMed
Google Scholar
Najafpour MM, Nemati Moghaddam A, Dau H, Zaharieva I (2014a) Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay. J Am Chem Soc 136:7245–7248
CAS
Article
PubMed
Google Scholar
Najafpour MM, Hołyńska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Ghaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K (2014b) The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture. Dalton Trans 43:13122–13135
CAS
Article
PubMed
Google Scholar
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI (2014c) Nanolayered manganese oxide/C60 composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Trans 43:12058–12064
CAS
Article
PubMed
Google Scholar
Najafpour MM, Rahimi F, Fathollahzadeh M, Haghighi B, Holyńska B, Tomo T, Allakhverdiev SI (2014d) Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Trans 43:10866–10876
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI (2014e) Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Adv 4:37613–37619
CAS
Article
Google Scholar
Najafpour MM, Abasi M, Hołyńska M (2014f) Nanolayered manganese oxides as water-oxidizing catalysts: the effects of Cu(II) and Ni(II) ions. RSC Adv 4:36017–36023
CAS
Article
Google Scholar
Najafpour MM, Khoshkam M, Jafarian Sedigh D, Zahraei A, Kompany-Zareh M (2015a) Self-healing for nanolayered manganese oxides in the presence of cerium (IV) ammonium nitrate: new findings. New J Chem 39:2547–2550. doi:10.1039/C4NJ02092H
CAS
Article
Google Scholar
Najafpour MM, Fekete M, Jafarian Sedigh D, Aro E-M, Carpentier R, Eaton-Rye JJ, Nishihara H, Shen J-R, Allakhverdiev SI, Spiccia L (2015b) Damage management in water-oxidizing catalysts: from Photosystem II to nano-sized metal oxides. ACS Catal 5:1499–1512
CAS
Article
Google Scholar
Nakamoto K (2009) Infrared and raman spectra of inorganic and coordination compounds, 6th edn. A Wiley-Interscience Publication, New York
Google Scholar
Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776
CAS
Article
PubMed
Google Scholar
Okuno Y, Yonemitsu O, Chiba Y (1983) Facile preparation of platinum sols by sodium borohydride reduction and its evaluation in the photosensitized reduction of water to hydrogen. Chem Lett 12:893–896
Article
Google Scholar
Plieth WJ (1982) Electrochemical properties of small clusters of metal atoms and their role in surface enhanced raman scattering. J Phys Chem 86:3166–3170
CAS
Article
Google Scholar
Robinson DM, Go YB, Greenblatt M, Dismukes GC (2010) Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 132:11467–11469
CAS
Article
PubMed
Google Scholar
Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 35:3494–3501
Article
Google Scholar
Shafirovich VY, Shilov AE (1979) Catalytic oxidation of water with the participation of manganese compounds in neutral and slightly acid media. Kinet Catal (USSR) (Engl Transl) (U S) 20:23–36
Google Scholar
Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257:2607–2622
CAS
Article
Google Scholar
Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557
CAS
Article
PubMed
Google Scholar
Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:18153–18156
CAS
Article
PubMed
Google Scholar
Turner JA (1999) A realizable renewable energy future. Science 285:687–689
CAS
Article
PubMed
Google Scholar
Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60
CAS
Article
PubMed
Google Scholar
Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593
CAS
Article
PubMed
Google Scholar
Yeo BS, Bell AT (2012) In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116:8394–8400
CAS
Article
Google Scholar
Zhou F, Izgorodin A, Hocking RK, Armel V, Spiccia L, MacFarlane DR (2013) Improvement of catalytic water oxidation on MnO
x
films by heat treatment. ChemSusChem 6:643–651