Skip to main content

Advertisement

Log in

The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic microalgae are currently the focus of basic and applied research due to an ever-growing interest in renewable energy resources. This review discusses the role of carbon-unit supply for the production of acetyl-CoA, a direct precursor of fatty acid biosynthesis and the primary building block of the growing acyl chains for the purpose of triacylglycerol (TAG) production in photosynthetic microalgae under stressful conditions. It underscores the importance of intraplastidic acetyl-CoA generation for storage lipid accumulation. The main focus is placed on two enzymatic steps linking the central carbon metabolism and fatty acid synthesis, namely the reactions catalyzed by the plastidic isoform of pyruvate kinase and the chloroplastic pyruvate dehydrogenase complex. Alternative routes for plastidic acetyl-CoA synthesis are also reviewed. A separate section is devoted to recent advances in functional genomics studies related to fatty acid and TAG biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ambasht PK, Kayastha A (2002) Plant pyruvate kinase. Biol Plant 45:1–10. doi:10.1023/A:1015173724712

    CAS  Google Scholar 

  • Andre C, Benning C (2007) Arabidopsis seedlings deficient in a plastidic pyruvate kinase are unable to utilize seed storage compounds for germination and establishment. Plant Physiol 145:1670–1680. doi:10.1104/pp.107.108340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86. doi:10.1126/science.1101156

    CAS  PubMed  Google Scholar 

  • Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909–9918

  • Atteia A, van Lis R, Tielens AG, Martin WF (2013) Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim Biophys Acta 1827:210–223. doi:10.1016/j.bbabio.2012.08.002

    CAS  PubMed  Google Scholar 

  • Bao X, Focke M, Pollard M, Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J 22:39–50. doi:10.1046/j.1365-313x.2000.00712.x

    CAS  PubMed  Google Scholar 

  • Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat C (2007) Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 52:405–419. doi:10.1111/j.1365-313X.2007.03232.x

    CAS  PubMed  Google Scholar 

  • Behal R, Lin M, Back S, Oliver D (2002) Role of acetyl-coenzyme A synthetase in leaves of Arabidopsis thaliana. Arch Biochem Biophys 402:259–267. doi:10.1016/S0003-9861(02)00086-3

    CAS  PubMed  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697. doi:10.1104/pp.103.022988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z (2002a) Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): radiolabeling studies. Lipids 37:209–216

    CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Cohen Z (2002b) Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Phytochemistry 60:135–143. doi:10.1016/S0031-9422(02)00037-7

    CAS  PubMed  Google Scholar 

  • Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell Online 25:4305–4323. doi:10.1105/tpc.113.117580

    CAS  Google Scholar 

  • Blakeley S, Plaxton W, Dennis D (1990) Cloning and characterization of a cDNA for the cytosolic isozyme of plant pyruvate kinase: the relationship between the plant and non-plant enzyme. Plant Mol Biol 15:665–669. doi:10.1007/BF00017842

    CAS  PubMed  Google Scholar 

  • Blakeley SD, Plaxton WC, Dennis DT (1991) Relationship between the subunits of leucoplast pyruvate kinase from Ricinus communis and a comparison with the enzyme from other sources. Plant Physiol 96:1283–1288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blakeley S, Gottlob-McHugh S, Wan J, Crews L, Miki B, Ko K, Dennis DT (1995) Molecular characterization of plastid pyruvate kinase from castor and tobacco. Plant Mol Biol 27:79–89

    CAS  PubMed  Google Scholar 

  • Bohne A-V, Schwarz C, Schottkowsk M, Lidschreiber M, Piotrowski M, Zerges W, Jr Nickelsen (2013) Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis. PLoS Biol 11:1–18

    Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 108:12527–12532. doi:10.1073/pnas.1115243108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    CAS  PubMed  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825. doi:10.1074/jbc.M111.334052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    CAS  Google Scholar 

  • Bromke MA, Giavalisco P, Willmitzer L, Hesse H (2013) Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana. PLoS One 8:e67340. doi:10.1371/journal.pone.0067340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bucher M, Brander K, Sbicego S, Mandel T, Kuhlemeier C (1995) Aerobic fermentation in tobacco pollen. Plant Mol Biol 28:739–750. doi:10.1007/BF00021197

    CAS  PubMed  Google Scholar 

  • Cakmak T, Angun P, Ozkan AD, Cakmak Z, Olmez TT, Tekinay T (2012) Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered 3:343–346. doi:10.4161/bioe.21427

    PubMed Central  PubMed  Google Scholar 

  • Cakmak ZE, Ölmez TT, Çakmak T, Menemen Y, Tekinay T (2014) Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes. Bioresour Technol 155:379-387. doi:http://dx.doi.org/10.1016/j.biortech.2013.12.093

  • Camp PJ, Randall DD (1985) Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex: a source of acetyl-CoA and NADH for fatty acid biosynthesis. Plant Physiol 77:571–577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Catalanotti C, Dubini A, Subramanian V, Yang W, Magneschi L, Mus F, Seibert M, Posewitz MC, Grossman AR (2012) Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase. Plant Cell Online 24:692–707. doi:10.1105/tpc.111.093146

    CAS  Google Scholar 

  • Catalanotti C, Yang W, Posewitz MC, Grossman AR (2013) Fermentation metabolism and its evolution in algae. Front Plant Sci 4:RAJRAJAEAJ. doi:10.3389/fpls.2013.00150

    Google Scholar 

  • Cohen Z, Khozin-Goldberg I, Ratledge C (2010) Searching for PUFA-rich microalgae. In: Cohen Z (ed) Single cell oils, 2nd edn. AOCS Press, Champaign, pp 201–224

    Google Scholar 

  • Corteggiani Carpinelli E, Telatin A, Vitulo N, Forcato C, D’Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G (2013) Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant 7:323–335. doi:10.1093/mp/sst120

    PubMed  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79. doi:10.1104/pp.114.248450

  • Davison IR (1987) Partial purification and preliminary characterization of pyruvate kinase from the brown alga Ascophyllum nodosum. Br Phycol J 22:401–409

    Google Scholar 

  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 490:1–6. doi:10.1016/S0014-5793(00)02331-0

    CAS  PubMed  Google Scholar 

  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284:7201–7213. doi:10.1074/jbc.M803917200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991. doi:10.1016/j.febslet.2011.05.018

    CAS  PubMed  Google Scholar 

  • Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390. doi:10.1093/pcp/pcs082

    CAS  PubMed  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17

    PubMed Central  PubMed  Google Scholar 

  • Fatland B, Anderson M, Nikolau BJ, Wurtele ES (2000) Molecular biology of cytosolic acetyl-CoA generation. Biochem Soc Trans 28:593–595

    CAS  PubMed  Google Scholar 

  • Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ, Wurtele ES (2002) Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol 130:740–756. doi:10.1104/pp.008110

    PubMed Central  PubMed  Google Scholar 

  • Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:1779–1790. doi:10.1104/pp.110.171595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fritsch H, Beevers H (1979) ATP citrate lyase from germinating castor bean endosperm. Plant Physiol 63:687–691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ge F, Huang W, Chen Z, Zhang C, Xiong Q, Bowler C, Yang J, Xu J, Hu H (2014) Methylcrotonyl-CoA carboxylase regulates triacylglycerol accumulation in the model diatom Phaeodactylum tricornutum. Plant Cell Online 26:1681–1697

    CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gfeller RP, Gibbs M (1985) Fermentative metabolism of Chlamydomonas reinhardtii: II. Role of plastoquinone. Plant Physiol 77:509–511

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardii: III. Photoassimilation of acetate. Plant Physiol 82:160–166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibon Y, Pyl E-T, Sulpice R, Lunn JE, Höhne M, Günther M, Stitt M (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ 32:859–874. doi:10.1111/j.1365-3040.2009.01965.x

    CAS  PubMed  Google Scholar 

  • González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell Online 22:2058–2084

    Google Scholar 

  • Goodenough U et al (2014) The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii. Eukaryot Cell 13:591–613. doi:10.1128/ec.00013-14

    PubMed Central  PubMed  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606. doi:10.1128/EC.05242-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerra LT, Levitan O, Frada MJ, Sun JS, Falkowski PG, Dismukes GC (2013) Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass Bioenergy 59:306–315. doi:10.1016/j.biombioe.2013.10.007

    CAS  Google Scholar 

  • Guihéneuf F, Stengel D (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11:4246–4266

    PubMed Central  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 67:1731–1739. doi:10.1016/j.phytochem.2006.01.023

    CAS  PubMed  Google Scholar 

  • Harwood JL (ed) (2005) Fatty acid biosynthesis plant lipids: biology, utilisation, and manipulation. Blackwell Publishing, Oxford, pp 27–66

    Google Scholar 

  • Ho SH, Chen CY, Chang JS (2011) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. doi:10.1016/j.biortech.2011.11.133

    PubMed  Google Scholar 

  • Hoffmeister M, Piotrowski M, Nowitzki U, Martin W (2005) Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 280:4329–4338. doi:10.1074/jbc.M411010200

    CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x

    CAS  PubMed  Google Scholar 

  • Huerlimann R, Heimann K (2013) Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotechnol 33:49–65. doi:10.3109/07388551.2012.668671

    CAS  PubMed  Google Scholar 

  • Jia J, Han D, Gerken HG, Li Y, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77. doi:10.1016/j.algal.2014.11.005

    Google Scholar 

  • Jinkerson RE, Radakovits R, Posewitz MC (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:37–43. doi:10.4161/bioe.21880

    PubMed Central  PubMed  Google Scholar 

  • Johnston ML, Luethy MH, Miernyk JA, Randall DD (1997) Cloning and molecular analyses of the Arabidopsis thaliana plastid pyruvate dehydrogenase subunits. Biochim Biophys Acta 1321:200–206. doi:10.1016/S0005-2728(97)00059-5

    CAS  PubMed  Google Scholar 

  • Kang F, Rawsthorne S (1994) Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J 6:795–805. doi:10.1046/j.1365-313X.1994.6060795.x

    CAS  Google Scholar 

  • Ke J, Behal RH, Back SL, Nikolau BJ, Wurtele ES, Oliver DJ (2000) The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol 123:497–508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klein U (1986) Compartmentation of glycolysis and of the oxidative pentose-phosphate pathway in Chlamydomonas reinhardii. Planta 167:81–86. doi:10.1007/BF00446372

    CAS  PubMed  Google Scholar 

  • Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528. doi:10.1016/j.tibtech.2014.07.004

    CAS  PubMed  Google Scholar 

  • Knowles VL, Dennis DT, Plaxton WC (1989) Purification of a novel pyruvate kinase from a green alga. FEBS Lett 259:130–132. doi:10.1016/0014-5793(89)81511-X

    CAS  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426. doi:10.1371/journal.pone.0001426

    PubMed Central  PubMed  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27. doi:10.1007/s10142-002-0046-6

    CAS  PubMed  Google Scholar 

  • Levitan O, Dinamarca J, Zelzion E, Lun DS, Guerra LT, Kim MK, Kim J, Van Mooy BA, Bhattacharya D, Falkowski PG (2015) Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc Natl Acad Sci USA 112:412–417. doi:10.1073/pnas.1419818112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J et al (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665. doi:10.1105/tpc.113.121418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C (2012) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24:4670–4686. doi:10.1105/tpc.112.105106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin M, Oliver D (2008) The role of acetyl-coenzyme a synthetase in Arabidopsis. Plant Physiol 147:1822–1829. doi:10.1105/tpc.112.105106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol. doi:10.1016/j.copbio.2012.08.008

    Google Scholar 

  • Longworth J, Noirel J, Pandhal J, Wright PC, Vaidyanathan S (2012) HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. J Proteome Res 11:5959–5971. doi:10.1021/pr300692t

    CAS  PubMed  Google Scholar 

  • Lonien J, Schwender J (2009) Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol 151:1617–1634. doi:10.1104/pp.109.144121

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lutziger I, Oliver DJ (2000) Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana. FEBS Lett 484:12–16. doi:10.1016/S0014-5793(00)02116-5

    CAS  PubMed  Google Scholar 

  • Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229–237. doi:10.1016/j.ygeno.2013.01.004

    CAS  PubMed  Google Scholar 

  • Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR (2012) A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. Plant Physiol 158:1293–1305. doi:10.1104/pp.111.191569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Masterson C, Wood C, Thomas DR (1990) L-acetylcarnitine, a substrate for chloroplast fatty acid synthesis. Plant Cell Environ 13:755–765. doi:10.1111/j.1365-3040.1990.tb01091.x

    CAS  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mentzen WI, Peng J, Ransom N, Nikolau BJ, Wurtele ES (2008) Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC Plant Biol 8:76. doi:10.1186/1471-2229-8-76

    PubMed Central  PubMed  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843. doi:10.1111/j.1529-8817.2007.00375.x

    CAS  Google Scholar 

  • Miernyk JA, Dennis DT (1983) The incorporation of glycolytic intermediates into lipids by plastids isolated from the developing endosperm of castor oil seeds (Ricinus communis L.). J Exp Bot 34:712–718. doi:10.1093/jxb/34.6.712

    CAS  Google Scholar 

  • Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

  • Mooney BP, Miernyk JA, Randall DD (1999) Cloning and characterization of the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from Arabidopsis. Plant Physiol 120:443–452

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muñoz M, Ponce E (2003) Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 135:197–218. doi:10.1016/S1096-4959(03)00081-2

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

  • Nallamilli BR, Edelmann MJ, Zhong X, Tan F, Mujahid H, Zhang J, Nanduri B, Peng Z (2014) Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice Oryza sativa. PLoS One 9:e89283. doi:10.1371/journal.pone.0089283

    PubMed Central  PubMed  Google Scholar 

  • Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li- Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

  • Nikolau BJ, Oliver DJ, Schnable PS, Wurtele ES (2000) Molecular biology of acetyl-CoA metabolism. Biochem Soc Trans 28:591–593

    CAS  PubMed  Google Scholar 

  • O’Hara P, Slabas AR, Fawcett T (2002) Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol 129:310–320. doi:10.1104/pp.010956

    PubMed Central  PubMed  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136. doi:10.1146/annurev.arplant.48.1.109

    CAS  PubMed  Google Scholar 

  • Oliver DJ, Nikolau BJ, Wurtele ES (2009) Acetyl-CoA—Life at the metabolic nexus. Plant Sci 176:597–601. doi:10.1016/j.plantsci.2009.02.005

    CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441. doi:10.1007/s00253-011-3170-1

    CAS  PubMed  Google Scholar 

  • Perrineau M-M, Gross J, Zelzion E, Price DC, Levitan O, Boyd J, Bhattacharya D (2014) Using natural selection to explore the adaptive potential of Chlamydomonas reinhardtii. PLoS One 9:e92533. doi:10.1371/journal.pone.0092533

    PubMed Central  PubMed  Google Scholar 

  • Philipps G, Krawietz D, Hemschemeier A, Happe T (2011) A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae. Plant J 66:330–340. doi:10.1111/j.1365-313X.2011.04494.x

    CAS  PubMed  Google Scholar 

  • Qi Q, Trimming BA, Kleppinger-Sparace KF, Emes MJ, Sparace SA (1996) Pyruvate dehydrogenase complex and acetyl-CoA carboxylase in pea root plastids: their characterization and role in modulating glycolytic carbon flow to fatty acid biosynthesis. J Exp Bot 47:1889–1896. doi:10.1093/jxb/47.12.1889

    CAS  Google Scholar 

  • Rangasamy D, Ratledge C (2000) Compartmentation of ATP:citrate lyase in plants. Plant Physiol 122:1225–1230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ratledge C, Bowater MD, Taylor PN (1997) Correlation of ATP/citrate lyase activity with lipid accumulation in developing seeds of Brassica napus L. Lipids 32:7–12

    CAS  PubMed  Google Scholar 

  • Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196. doi:10.1016/S0163-7827(01)00023-6

    CAS  PubMed  Google Scholar 

  • Recht L, Töpfer N, Batushansky A, Sikron N, Gibon Y, Fait A, Nikoloski Z, Boussiba S, Zarka A (2014) Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. J Biol Chem 289:30387–30403. doi:10.1074/jbc.M114.555144

    CAS  PubMed  Google Scholar 

  • Reid EE, Thompson P, Lyttle CR, Dennis DT (1977) Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids. Plant Physiol 59:842–848. doi:10.1104/pp.59.5.842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74. doi:10.1186/1754-6834-5-74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roughan PG, Holland R, Slack CR (1979) Acetate is the preferred substrate for long-chain fatty acid synthesis in isolated spinach chloroplasts. Biochem J 184:565–569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell Online 14:1191–1206

    CAS  Google Scholar 

  • Saito T, Nishi M, Lim MI, Wu B, Maeda T, Hashimoto H, Takeuchi T, Roos DS, Asai T (2008) A novel GDP-dependent pyruvate kinase isozyme from Toxoplasma gondii localizes to both the apicoplast and the mitochondrion. J Biol Chem 283:14041–14052. doi:10.1074/jbc.M709015200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakurai K, Moriyama T, Sato N (2013) Detailed identification of fatty acid isomers sheds light on the probable precursors of triacylglycerol accumulation in photoautotrophically grown Chlamydomonas reinhardtii. Eukaryot Cell 13:256–266. doi:10.1128/EC.00280-13

    PubMed  Google Scholar 

  • Sangwan R, Gauthier D, Turpin D, Pomeroy MK, Plaxton W (1992) Pyruvate-kinase isoenzymes from zygotic and microspore-derived embryos of Brassica napus. Planta 187:198–202. doi:10.1007/BF00201938

    CAS  PubMed  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68:1175–1184

    CAS  PubMed  Google Scholar 

  • Sato N, Tsuzuki M, Kawaguchi A (2003) Glycerolipid synthesis in Chlorella kessleri 11 h. I. Existence of a eukaryotic pathway. Biochim Biophys Acta 1633:27–34. doi:10.1016/S1388-1981(03)00069-6

    CAS  PubMed  Google Scholar 

  • Schmollinger S, Mühlhaus T, Boyle NR et al (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell Online 26:1410–1435. doi:10.1105/tpc.113.122523

    CAS  Google Scholar 

  • Scott S, Davey M, Dennis J, Horst I, Howe C, Lea-Smith D, Smith A (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286. doi:10.1016/j.copbio.2010.03.005

    CAS  PubMed  Google Scholar 

  • Shtaida N, Khozin-Goldberg I, Solovchenko A, Chekanov K, Didi-Cohen S, Leu S, Cohen Z, Boussiba S (2014) Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii. J Exp Bot 65:6563–6576. doi:10.1093/jxb/eru374

    PubMed Central  PubMed  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7. doi:10.1186/1472-6750-11-7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RG, Gauthier DA, Dennis DT, Turpin DH (1992a) Malate- and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol 98:1233–1238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RG, Gauthier DA, Dennis DT, Turpin DH (1992b) Malate- and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol 98:1233–1238. doi:10.1104/pp.98.4.1233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SR, Abbriano RM, Hildebrand M (2012) Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. Algal Res 1:2–16. doi:10.1016/j.algal.2012.04.003

    CAS  Google Scholar 

  • Solovchenko AE (2012) Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol 59:167–176. doi:10.1134/s1021443712020161

    CAS  Google Scholar 

  • Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134. doi:10.1016/j.biortech.2014.01.135

    CAS  PubMed  Google Scholar 

  • Terashima M, Specht M, Hippler M (2011) The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57:151–168. doi:10.1007/s00294-011-0339-1

    CAS  PubMed  Google Scholar 

  • To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell Online 24:5007–5023. doi:10.1105/tpc.112.106120

    CAS  Google Scholar 

  • Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049. doi:10.1046/j.1432-1033.2003.03469.x

    PubMed  Google Scholar 

  • Valenzuela J, Mazurie A, Carlson R, Gerlach R, Cooksey K, Peyton B, Fields M (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17. doi:10.1186/1754-6834-5-40

    Google Scholar 

  • Vieler A et al (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064. doi:10.1371/journal.pgen.1003064

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wase N, Black PN, Stanley BA, DiRusso CC (2014) Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13:1373–1396. doi:10.1021/pr400952z

    CAS  PubMed  Google Scholar 

  • Wei Y, Lin M, Oliver D, Schnable P (2009) The roles of aldehyde dehydrogenases (ALDHs) in the PDH bypass of Arabidopsis. BMC Biochem 10:7

    PubMed Central  PubMed  Google Scholar 

  • Williams M, Randall DD (1979) Pyruvate dehydrogenase complex from chloroplasts of Pisum sativum L. Plant Physiol 64:1099–1103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu HB, Turpin DH (1992) Purification and characterization of pyruvate kinase from the green alga Chlamydomonas reinhardtii. J Phycol 28:472–481. doi:10.1111/j.0022-3646.1992.00472.x

    CAS  Google Scholar 

  • Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257. doi:10.1099/00221287-143-1-253

    CAS  Google Scholar 

  • Wynn JP, AbA Hamid, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917. doi:10.1099/13500872-145-8-1911

    CAS  PubMed  Google Scholar 

  • Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan Y, Li HY (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67. doi:10.1186/1754-6834-6-67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR (2015) Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. Plant J. doi:10.1111/tpj.12823

    PubMed Central  Google Scholar 

  • Zeeman SC, Rees TA (1999) Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ 22:1445–1453. doi:10.1046/j.1365-3040.1999.00503.x

    CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025. doi:10.1099/mic.0.2006/002683-0

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the European Commission’s Seventh Framework Program for Research and Technology Development (FP7), project GIAVAP, Grant No. 266401. NS acknowledges support from the Albert Katz International School for Desert Studies and the Kreitman School of Advanced Graduate Studies at Ben-Gurion University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtaida, N., Khozin-Goldberg, I. & Boussiba, S. The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae. Photosynth Res 125, 407–422 (2015). https://doi.org/10.1007/s11120-015-0136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0136-7

Keywords

Navigation