Photosynthesis Research

, Volume 125, Issue 1–2, pp 329–340 | Cite as

Cyanofuels: biofuels from cyanobacteria. Reality and perspectives

  • Fariza Sarsekeyeva
  • Bolatkhan K. Zayadan
  • Aizhan Usserbaeva
  • Vladimir S. Bedbenov
  • Maria A. Sinetova
  • Dmitry A. Los
Review

Abstract

Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth’s oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels—biofuels produced from cyanobacterial biomass.

Keywords

Biofuels Biomass Cyanobacteria Cyanofuels Fatty acids Photosynthesis 

Abbreviations

ACP

Acyl carrier protein

DAG

Diacylglycerol

FA

Fatty acid

FFA

Free fatty acid

PM

Photosynthetic machinery

TAG

Triacylglycerol

References

  1. Akhtar MK, Dandapani H, Thiel K, Jones PR (2015) Microbial production of 1-octanol: a naturally excreted biofuel with diesel-like properties. Metab Eng Commun 2:1–5. doi:10.1016/j.meteno.2014.11.001 CrossRefGoogle Scholar
  2. Allahverdiyeva Y, Leino H, Saari L, Fewer DP, Shunmugam S, Sivonen K, Aro E-M (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrogen Energy 35:1117–1127. doi:10.1016/j.ijhydene.2009.12.030 CrossRefGoogle Scholar
  3. Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010) Photosynthetic hydrogen production. J Photochem Photobiol C Photochem Rev 11:101–113. doi:10.1016/j.jphotochemrev.2010.07.002 CrossRefGoogle Scholar
  4. Al-Thani RF, Potts M (2012) Cyanobacteria, oil—and cyanofuel? In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 427–440. doi:10.1007/978-94-007-3855-3_16 CrossRefGoogle Scholar
  5. Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263. doi:10.1016/j.copbio.2009.05.011 PubMedCrossRefGoogle Scholar
  6. Antal TK, Krendeleva TE, Pashchenko VZ, Rubin AB, Stensjo K, Tyystjärvi E, Los DA, Carpentier R, Nishihara H, Allakhverdiev SI (2011) Photosynthetic hydrogen production: mechanisms and approaches. In: Azbar N, Levin D (eds) State of the art and progress in production of biohydrogen. Bentham Science Publishers, Ottawa, pp 25–53. doi:10.2174/978160805224011201010025 Google Scholar
  7. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. doi:10.1038/nature06450 PubMedCrossRefGoogle Scholar
  8. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180. doi:10.1038/nbt.1586 PubMedCrossRefGoogle Scholar
  9. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7:71–86. doi:10.1093/mp/sst134 PubMedCrossRefGoogle Scholar
  10. Bezergianni S, Dimitriadis A (2013) Comparison between different types of renewable diesel. Renew Sustain Energy Rev 21:110–116. doi:10.1016/j.rser.2012.12.042 CrossRefGoogle Scholar
  11. Burnap RL, Hagemann M, Kaplan A (2015) Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5:348–371. doi:10.3390/life5010348 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cantu DC, Chen Y, Reilly PJ (2010) Thioesterases: a new perspective based on their primary and tertiary structures. Prot Sci 19:1281–1295. doi:10.1002/pro.417 CrossRefGoogle Scholar
  13. Carrieri D, Wawrousek K, Eckert C, Yu J, Maness P-C (2011) The role of the bidirectional hydrogenase in cyanobacteria. Biores Technol 102:8368–8377. doi:10.1016/j.biortech.2011.03.103 CrossRefGoogle Scholar
  14. Chaves JE, Kirst H, Melis A (2014) Isoprene production in Synechocystis under alkaline and saline growth conditions. J Appl Phycol. doi:10.1007/s10811-014-0395-2 Google Scholar
  15. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  16. Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528. http://aem.asm.org/content/65/2/523.full.pdf+html
  17. Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864. doi:10.1039/b811937f CrossRefGoogle Scholar
  18. Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Börner T, Wilde A, Dühring U, Enke H, Hess WR (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol Biofuels 7:21. http://www.biotechnologyforbiofuels.com/content/7/1/21
  19. Doan TTE, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1:17–21. doi:10.1016/j.algal.2012.03.001 CrossRefGoogle Scholar
  20. Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Fact 13:128. http://www.microbialcellfactories.com/content/13/128
  21. Gao QQ, Wang WH, Zhao H, Lu XF (2012a) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:17. http://www.biotechnologyforbiofuels.com/content/5/1/17
  22. Gao Z, Zhao H, Li Z, Tan X, Lu X (2012b) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865. doi:10.1039/C2EE22675H CrossRefGoogle Scholar
  23. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335. doi:10.1038/nature11479 PubMedCrossRefGoogle Scholar
  24. Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 13:367–370. doi:10.1111/j.1574-6968.1982.tb08289.x CrossRefGoogle Scholar
  25. Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR (2012) Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. Plos One 7:e50470. doi:10.1371/journal.pone.0050470 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hallenbeck PC (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, Dordrecht, pp 15–28. doi:10.1007/978-1-4614-1208-3_2 CrossRefGoogle Scholar
  27. Hamed SM, Klöck G (2014) Improvement of medium composition and utilization of mixotrophic cultivation for green and blue green microalgae towards biodiesel production. Adv Microbiol 4:167–174. doi:10.4236/aim.2014.43022 CrossRefGoogle Scholar
  28. Henley WJ, Litaker RW, Novoveská L, Duke CS, Quemada HD, Sayre RT (2013) Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res 2:66–77. doi:10.1016/j.algal.2012.11.001 CrossRefGoogle Scholar
  29. Hoekman SK, Brocha A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169. doi:10.1016/j.pecs.2009.11.004 CrossRefGoogle Scholar
  30. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x PubMedCrossRefGoogle Scholar
  31. Jindou S, Ito Y, Mito N, Uematsu K, Hosoda A., Tamura H (2014) Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. ACS Synth Biol 3:487–496. doi:10.1021/sb400197f
  32. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl–acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152:1598–1610. doi:10.1104/pp.109.148007 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kallio P, Pásztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:4731. doi:10.1038/ncomms5731 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 3:109–136. doi:10.1093/dnares/3.3.109 PubMedCrossRefGoogle Scholar
  35. Karatay SE, Dönmez G (2011) Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl Energy 88:3632–3635. doi:10.1016/j.apenergy.2011.04.010 CrossRefGoogle Scholar
  36. Kehoe DM, Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412. doi:10.1126/science.273.5280.1409 PubMedCrossRefGoogle Scholar
  37. Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. AOCS Inform 12:1103–1107. doi:10.1201/9781439822357.ch2 Google Scholar
  38. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373. doi:10.1016/j.pecs.2009.11.004 CrossRefGoogle Scholar
  39. Kopf M, Klähn S, Scholz I, Matthiessen JKF, Hess WR, Voß B (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21:527–539. doi:10.1093/dnares/dsu018 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kosourov S, Leino H, Murukesan G, Lynch F, Sivonen K, Tsygankov AA, Aro EM, Allahverdiyeva Y (2014) Hydrogen photoproduction by immobilized n2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process. Appl Environ Microbiol 80:5807–5817. doi:10.1128/AEM.01776-14 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363. doi:10.1016/j.ymben.2011.04.004 PubMedCrossRefGoogle Scholar
  42. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79. doi:10.1016/j.ymben.2009.10.001 PubMedCrossRefGoogle Scholar
  43. Liu XY, Fallona S, Sheng J, Curtiss R III (2011a) CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass. Proc Natl Acad Sci USA 108:6905–6908. doi:10.1073/pnas.1103016108 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Liu XY, Sheng J, Curtiss R III (2011b) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108:6899–6904. doi:10.1073/pnas.1103014108 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV (2010) Stress sensors and signal transducers in cyanobacteria. Sensors 10:2386–2415. doi:10.3390/s100302386 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Los DA, Mironov KS (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5:554–567. doi:10.3390/life5010554
  47. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56. doi:10.1016/j.jbiotec.2012.03.005 PubMedCrossRefGoogle Scholar
  48. Martin GJO, Hill DRA, Olmstead ILD, Bergamin A, Shears MJ, Dias DA, Kentish SE, Scales PJ, Botté CY, Callahan DL (2014) Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One 9(8):e103389. doi:10.1371/journal.pone.0103389 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624. doi:10.1007/s00253-002-0934-7 PubMedCrossRefGoogle Scholar
  50. McKendry P (2002) Energy production from biomass (Part 1): overview of biomass. Biores Technol 83:37–46. doi:10.1016/S0960-8524(01)00118-3 CrossRefGoogle Scholar
  51. McMahon MD, Prathera KLJ (2014) Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli. Appl Env Microbiol 80:1042–1050. doi:10.1128/AEM.03303-13 CrossRefGoogle Scholar
  52. Melis A (2012) Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy Environ Sci 5:5531–5539. doi:10.1039/C1EE02514G CrossRefGoogle Scholar
  53. Mironov KS, Maksimov EG, Maksimov GV, Los DA (2012) A feedback between membrane fluidity and transcription of the desB gene for the ω3 fatty acid desaturase in the cyanobacterium Synechocystis. Mol Biol 46:147–155. doi:10.1134/S002689331201013X CrossRefGoogle Scholar
  54. Murata N, Wada H, Gombos Z (1992) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33:933–941. http://pcp.oxfordjournals.org/content/33/7/933.full.pdf+html
  55. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energ Rev 14:578–597. doi:10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  56. Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Intl J Hydrogen Energy 37:8753–8764. doi:10.1016/j.ijhydene.2012.02.075 CrossRefGoogle Scholar
  57. Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7. doi:10.3389/fbioe.2013.00007 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Pásztor A, Kallio P, Malatinszky D, Akhtar MK, Jone PR (2015) A synthetic O2-tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli. Biotechnol Bioeng 112:120–128. doi:10.1002/bit.25324 PubMedCrossRefGoogle Scholar
  59. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328. doi:10.1038/nature11478 PubMedCrossRefGoogle Scholar
  60. Piorreck M, Pohl P (1984) Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry 23:207–217. doi:10.1016/S0031-9422(00)80305-2 CrossRefGoogle Scholar
  61. Přibyl P, Cepák V, Zachleder V (2014) Oil overproduction by means of microalgae. In: Bajpai R, Prokop A, Zappi M (eds) Cultivation of cells and products, vol 1. Springer, Dordrecht, pp 241–273. doi:10.1007/978-94-007-7494-0_10 Google Scholar
  62. Quinn PJ, Williams WP (1982) The structural role of lipids in photosynthetic membranes. Biochim Biophys Acta 737:223–266. doi:10.1016/0304-4157(83)90002-3 CrossRefGoogle Scholar
  63. Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490. doi:10.1007/s00253-011-3394-0 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ 3:343–362. doi:10.1002/wene.97 CrossRefGoogle Scholar
  65. Rosgaard L, Jara de Porcellinis A, Jacobsen JH, Frigaard N-U, Sakuragi Y (2012) Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162:134–147. doi:10.1016/j.jbiotec.2012.05.006 PubMedCrossRefGoogle Scholar
  66. Ruffing AM (2013) RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium. Biotechnol Biofuels 6:113. http://www.biotechnologyforbiofuels.com/content/6/1/113
  67. Ruffing AM, Jones HDT (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199. doi:10.1002/bit.24509 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sakai M, Ogawa T, Matsuoka M, Fukuda H (1997) Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J Ferment Bioeng 84:434–443. doi:10.1016/S0922-338X(97)82004-1 CrossRefGoogle Scholar
  69. Sakurai H, Masukawa H, Kitashima M, Inoue M (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobiol C Photochem Rev 17:1–25. doi:10.1016/j.jphotochemrev.2013.05.001 CrossRefGoogle Scholar
  70. Sarsekeyeva FK, Usserbaeva AA, Zayadan BK, Mironov KS, Sidorov RA, Kozlova AY, Kupriyanova EV, Sinetova MA, Los DA (2014) Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition. Adv Microbiol 4:1033–1043. doi:10.4236/aim.2014.415114 CrossRefGoogle Scholar
  71. Schaller GE, Kieber JJ (2002) Ethylene. In: Somerville C, Meyerowitz E, Rockville MD (eds) The arabidopsis book. American Society of Plant Biologists 1:e0071. http://www.bioone.org/doi/pdf/10.1199/tab.0071
  72. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562. doi:10.1126/science.1187936 PubMedCrossRefGoogle Scholar
  73. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553. doi:10.3390/en5051532 CrossRefGoogle Scholar
  74. Shestakov SV, Khyen NT (1970) Evidence for genetic transformation in the blue-green alga Anacystis nidulans. Mol Gen Genet 107:372–375. doi:10.1007/BF00441199 PubMedCrossRefGoogle Scholar
  75. Shih PM, Wu DY, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110:1053–1058. doi:10.1073/pnas.1217107110 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Singh Nigam P, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Comb Sci 37:52–68. doi:10.1016/j.pecs.2010.01.003 CrossRefGoogle Scholar
  77. Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W (2014) A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell. doi:10.1074/mcp.M113.035675 PubMedCentralGoogle Scholar
  78. Spoehr HA, Milner HW (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–149. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC437916
  79. Stumborg M, Wong A, Hogan E (1996) Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour Technol 56:13–18. doi:10.1016/0960-8524(95)00181-6 CrossRefGoogle Scholar
  80. Takahama K, Matsuoka M, Nagahama K, Ogawa T (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 95:302–305. doi:10.1016/S1389-1723(03)80034-8 PubMedCrossRefGoogle Scholar
  81. Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15:6416–6425PubMedCentralPubMedGoogle Scholar
  82. Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251. doi:10.1073/pnas.0600605103 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ungerer J, Tao L, Davis M, Ghirardi M, Maness PC, Yu JP (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energ Environ Sci 5:8998–9006. doi:10.1039/C2EE22555G CrossRefGoogle Scholar
  84. Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium chain acyl–acyl carrier protein thioesterase. J Bacteriol 176:7320–7327. http://jb.asm.org/content/176/23/7320.full.pdf+html
  85. von Berlepsch S, Kunz H-H, Brodesser S, Fink P, Marin K, Flügge U-I, Gierth M (2012) The acyl–acyl carrier protein synthetase from Synechocystis sp. PCC 6803 mediates fatty acid import. Plant Physiol 159:606–617. doi:10.1104/pp.112.195263 CrossRefGoogle Scholar
  86. Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679. doi:10.1046/j.1529-8817.2000.99198.x CrossRefGoogle Scholar
  87. Wada H, Murata N (1990) Temperature-induced changes in the fatty acids composition of the cyanobacterium, Synechocystis PCC 6803. Plant Physiol 92:1062–1069. doi:10.1104/pp.92.4.1062 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203. doi:10.1038/347200a0 PubMedCrossRefGoogle Scholar
  89. Wang R (1988) Development of biodiesel fuel. Taiyangneng Xuebao 9:434–436Google Scholar
  90. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69. http://www.biotechnologyforbiofuels.com/content/6/1/69
  91. Weng LC, Pasaribu B, Lin I-P, Tsai C-H, Chen C-S, Jiang P-L (2014) Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella. Sci Rep 4:5777. doi:10.1038/srep05777 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright DA, Nikolau BJ, Spalding MH, Halverson LJ (2014) High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants. Plant Biotechnol J 12:872–882. doi:10.1111/pbi.12190 PubMedCrossRefGoogle Scholar
  93. Zeng Y, Zhao B, Zhu L, Tong D, Hu C (2013) Catalytic pyrolysis of natural algae from water blooms over nickel phosphide for high quality bio-oil production. RSC Adv 3:10806–10816. doi:10.1039/C3RA23453C CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Fariza Sarsekeyeva
    • 1
    • 2
  • Bolatkhan K. Zayadan
    • 2
  • Aizhan Usserbaeva
    • 2
  • Vladimir S. Bedbenov
    • 1
  • Maria A. Sinetova
    • 1
  • Dmitry A. Los
    • 1
  1. 1.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Biotechnology, Faculty of Biology and BiotechnologyAl-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations