Skip to main content
Log in

The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 March 2015

Abstract

Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 182 O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B 104:1–8

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI (2012a) Photosynthesis research for sustainability: from natural to artificial. Biochim Biophys Acta 1817:1107–1109

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI (2012b) Photosynthetic and biomimetic hydrogen production. Intl J Hydrog Energy 37:8744–8752

    Article  CAS  Google Scholar 

  • Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58

    Article  CAS  PubMed  Google Scholar 

  • Birkner N, Nayeri S, Pashaei B, Najafpour MM, Casey WH, Navrotsky A (2013) Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. Proc Natl Acad Sci 110:8801–8806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bockris OM (1977) Energy-the solar hydrogen alternative. Wiley, New York, p 365

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of Photosystem II. Coord Chem Rev 252:444–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faunce T, Styring S, Wasielewski MR, Brudvig GW, Rutherford AW, Messinger J, Lee AF, Hill CL, de Groot H, Fontecave M, MacFarlane DR, Hankamer B, Nocera GG, Tiede DM, Dau H (2013) Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ Sci 6:1074–1076

    Article  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving centre. Science 303:1831–1838

  • Glikman TS, Shcheglova IS (1968) Water oxidation by Mn oxide. Kinet Katal 9:461–480

    CAS  Google Scholar 

  • Gust D, Moore TA, Moore AL (2012) Realizing artificial photosynthesis. Faraday Discuss 155:9–26

    Article  CAS  PubMed  Google Scholar 

  • Hillier W, Wang L (2013) Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ Sci 6:1074–1076

    Article  Google Scholar 

  • Hocking RK, Brimblecombe R, Chang LY, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by Mn in a geochemical-like cycle. Nat Chem 3:461–466

    CAS  PubMed  Google Scholar 

  • Hocking RK, Malaeb R, Gates WP, Patti AF, Chang SLY, Devlin G, MacFarlane DR, Spiccia L (2014) Formation of a nanoparticulate birnessite like phase in purported molecular water oxidation catalyst systems. ChemCatChem 6:2028–2038

    Article  CAS  Google Scholar 

  • Hou HJ (2010) Structural and mechanistic aspects of manganese-oxo compounds in water oxidation catalysis and potential. App J Integr Plant Biol 5:704–711

    Article  Google Scholar 

  • Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136:6002–6010

    Article  CAS  PubMed  Google Scholar 

  • Karlsson EA, Lee B, Åkermark T, Johnston TEV, Kärkäs MD, Sun J, Hansson Ö, Bäckvall J, Åkermark B (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 123:11919–11922

    Article  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328

    Article  CAS  Google Scholar 

  • Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int J Hydrog Energy 37:8753–8764

    Article  CAS  Google Scholar 

  • Najafpour MM, Amini E (2015) A very simple and high-yield method to synthesize nanolayered Mn oxide. Dalton Trans 44:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Isaloo MA (2014) Mechanism of water oxidation by nanolayered manganese oxide: a step forward. RSC Adv 4:6375–6378

    Article  CAS  Google Scholar 

  • Najafpour MM, Isaloo MA (2015) The mechanism of water oxidation by nanolayered manganese oxides: new insights. J Photoch Photobio B 29:1011–1344. doi:10.1016/j.jphotobiol.2015.01.009

    Google Scholar 

  • Najafpour MM, Nemati Moghaddam A (2012) Nano-sized Mn oxide: a proposed catalyst for water oxidation in the reaction of some Mn complexes and cerium (IV) ammonium nitrate. Dalton Trans 41:10292–10297

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaManganese2O4.xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Edit 49:2233–2237

    Article  CAS  Google Scholar 

  • Najafpour MM, Nayeri S, Pashaei B (2011) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Pashaei B, Nayeri S (2012a) Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Trans 41:7134–7140

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Rahimi F, Aro EM, Lee CH, Allakhverdiev SI (2012b) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J Roy Soc Interface 9:2383–2395

    Article  CAS  Google Scholar 

  • Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M (2012c) Avery simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans 41:11026–11031

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Jafarian Sedigh D, Pashaei B, Nayeri S (2013) Water oxidation by nano-layered manganese oxides in the presence of cerium(IV) ammonium nitrate: important factors and a proposed self-repair mechanism. New J Chem 37:2448–2459

    Article  CAS  Google Scholar 

  • Najafpour MM, Abasi M, Hołyńska M (2014a) Nanolayered manganese oxides as water-oxidizing catalysts: the effects of Cu(II) and Ni(II) ions. RSC Adv 4:36017–36023

    Article  CAS  Google Scholar 

  • Najafpour MM, Holynska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Gaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K (2014b) The role of nano-sized Mn oxides in the oxygen-evolution reactions by Mn complexes: towards a complete picture. Dalton Trans 43:13122–13135

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A, Dau H, Zaharieva I (2014c) Fragments of layered Mn oxide are the real water-oxidation catalyst after transformation of molecular precursor on clay. J Am Chem Soc 136:7245–7248

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Holynska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Gaemmaghami M, Sedigh DJ, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K (2014d) The role of nano-sized Mn oxides in the oxygen-evolution reactions by Mn complexes: towards a complete picture. Dalton Trans 43:13122–13135

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Hołyńska M, Salimi S (2015) Applications of the “nano to bulk” Mn oxides: Mn oxide as a Swiss army knife. Coord Chem Rev 285:65–75

    Article  CAS  Google Scholar 

  • Nakamoto K (2009) In infrared and Raman spectra of inorganic and coordination compounds. Wiley-Interscience Publication, New York

    Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  CAS  PubMed  Google Scholar 

  • Ruttinger W, Dismukes GC (1997) Synthetic water oxidation catalysts for artificial photosynthetic water oxidation. Chem Rev 97:1–24

    Article  PubMed  Google Scholar 

  • Shevela D, Koroidov S, Najafpour MM, Messinger J, Kurz P (2011) Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies. Chem Eur J 17:5415–5423

    Article  CAS  PubMed  Google Scholar 

  • Suga F, Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR (2015) Native structure of photosystem II at1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • van Santen RA, Tranca I, Hensen EJM (2014) Theory of surface chemistry and reactivity of reducible oxides. Catal Today 244:63–84

    Article  Google Scholar 

  • Young KJ, Gao Y, Brudvig GW (2011) Photocatalytic water oxidation using manganese compounds immobilized in nafion polymer membranes. Aust J Chem 64:1219–1226

    CAS  Google Scholar 

  • Yuan Z-Y, Zhang Z, Du G, Ren T, Sua B-L (2003a) A simple method to synthesise single-crystalline manganese oxide nanowires. Chem Phys Lett 378:349–353

    Article  CAS  Google Scholar 

  • Yuan J, Laubernds K, Zhang Q, Suib SL (2003b) Self-Assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres. J Am Chem Soc 125:4966–4967

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva I, Najafpour MM, Wiechen M, Haumann M, Kurz P, Dau H (2011) Synthetic manganese-calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ Sci 4:2400–2408

    Article  CAS  Google Scholar 

  • Zhou F, Izgorodin A, Hocking RK, Armel V, Spiccia L, MacFarlane DR (2013) Improvement of catalytic water oxidation on MnOx films by heat treatment. ChemSusChem 6:643–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MMN and MAI are grateful to the Institute for Advanced Studies in Basic Sciences and the National Elite Foundation for financial support. This work was also supported by a grant-in-aid for Specially Promoted Research No. 24000018 from JSPS, MEXT, Japan to JRS, and by grants from the Russian Foundation for Basic Research, by Molecular and Cell Biology Programs of the Russian Academy of Sciences to SIA. MH acknowledges Prof. Dr. Stefanie Dehnen for her generous support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mahdi Najafpour or Suleyman Allakhverdiev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafpour, M.M., Isaloo, M.A., Hołyńska, M. et al. The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation. Photosynth Res 126, 489–498 (2015). https://doi.org/10.1007/s11120-015-0098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0098-9

Keywords