Skip to main content

Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides

Abstract

Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1–2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH–M160LH–M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from 1B* to 1P (either directly or indirectly by internal conversion from 1P+) and to the oxidized dimer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

B:

Monomeric bacteriochlorophyll

P:

Dimeric bacteriochlorophyll

P+ and P :

Upper and lower excitonic band of the dimer, respectively

Rba :

Rhodobacter

RC:

Reaction center

References

  1. Arnett DC, Moser CC, Dutton PL, Scherer NF (1999) The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J Phys Chem 103:2014–2032

    Article  CAS  Google Scholar 

  2. Asztalos E, Sipka G, Kis M, Trotta M, Maróti P (2012) The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria. Photosynth Res 112:129–140

    Article  CAS  PubMed  Google Scholar 

  3. Boxer SG, Goldstein RA, Lockhart DJ, Middendorf TR, Takiff L (1989) Excited states, electron-transfer reactions, and intermediates in bacterial photosynthetic reaction centers. J Phys Chem 93:8280–8294

    Article  CAS  Google Scholar 

  4. Breton J (1985) Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim Biophys Acta 810:235–245

    Article  CAS  Google Scholar 

  5. Clayton RK (1966) Relations between photochemistry and fluorescence in cells and extracts of photosynthetic bacteria. Photochem Photobiol 5:807–821

    Article  CAS  Google Scholar 

  6. Deisenhofer J, Michel H (1991) High-resolution structures of photosynthetic reaction centers. Annu Rev Biophys Biophys Chem 20:247–266

    Article  CAS  PubMed  Google Scholar 

  7. Ebrey TG, Clayton RK (1969) Polarization of fluorescence from bacteriochlorophyll in castor oil, in chromatophores and as P870 in photosynthetic reaction centers. Photochem Photobiol 10:109–117

    Article  CAS  PubMed  Google Scholar 

  8. Huang L, Ponomarenko N, Wiederrecht GP, Tiede DM (2012) Cofactor-specific photochemical function resolved by ultrafast spectroscopy in photosynthetic reaction center crystals. Proc Natl Acad Sci 109:4851–4856

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  9. Jonas DM, Lang MJ, Nagasawa Y, Joo T, Fleming GR (1996) Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26. J Phys Chem 100:12660–12673

    Article  CAS  Google Scholar 

  10. Jones MR (2009) The petite purple photosynthetic powerpack. Biochem Soc Trans 37:400–407

    Article  CAS  PubMed  Google Scholar 

  11. Kis M, Asztalos E, Sipka G, Maróti P (2014) Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells. Photosynth Res 122(3):261–273

    Article  CAS  PubMed  Google Scholar 

  12. Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231

    Article  CAS  PubMed  Google Scholar 

  13. Kocsis P, Asztalos E, Gingl Z, Maróti P (2010) Kinetic bacteriochlorophyll fluorometer. Photosynth Res 105:73–82

    Article  CAS  PubMed  Google Scholar 

  14. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  15. Maróti P (2008) Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides. Eur Biophys J 37:1175–1184

    Article  PubMed  Google Scholar 

  16. Maróti P, Wraight CA (1988) Flash-induced H+ binding by bacterial photosynthetic reaction centers: comparison of spectrophotometric and conductimetric methods. Biochim Biophys Acta 934:314–328

    Article  Google Scholar 

  17. Onidas D, Sipka G, Asztalos E, Maróti P (2013) Mutational control of bioenergetics of bacterial reaction center probed by delayed fluorescence. Biochim Biophys Acta Bioenerg 1827:1191–1199

    Article  CAS  Google Scholar 

  18. Osváth Sz, Laczkó G, Sebban P, Maróti P (1996) Electron transfer in reaction centers of Rhodobacter sphaeroides and Rhodobacter capsulatus monitored by fluorescence of the bacteriochlorophyll dimer. Photosynth Res 47:41–49

    Article  PubMed  Google Scholar 

  19. Parson WW, Warshel A (2009) Mechanism of charge separation in purple bacterial reaction center. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 355–377

    Chapter  Google Scholar 

  20. Reddy NRS, Kolaczkowski SV, Small GJ (1993) Nonphotochemical hole burning of the reaction center of Rhodopseudomonas viridis. J Phys Chem 97(26):6934–6940

    Article  CAS  Google Scholar 

  21. Sauer K, Austin L (1978) Bacteriochlorophyll-protein complexes from light-harvesting antenna of photosynthetic bacteria. Biochemistry 17:2011–2019

    Article  CAS  PubMed  Google Scholar 

  22. Scherer POJ, Fischer SF, Lancaster CRD, Fritzsch G, Schmidt S, Arlt T, Dressler K, Zinth W (1994) Chem Phys Lett 223:110–115

    Article  CAS  Google Scholar 

  23. Spitz JA, Derrien V, Baciou L, Sebban P (2005) Specific triazine resistance in bacterial reaction centers induced by a single mutation in the QA protein pocket. Biochemistry 44:1338–1343

    Article  CAS  PubMed  Google Scholar 

  24. Stanley RJ, King B, Boxer SG (1996) Excited state energy transfer pathways in photosynthetic reaction centers. 1. Structural symmetry effects. J Phys Chem 100:12052–12059

    Article  CAS  Google Scholar 

  25. Warshel A, Parson WW (1991) Computer simulations of electron-transfer reactions in solution and in photosynthetic reaction centers. Annu Rev Phys Chem 42:279–309

    Article  CAS  PubMed  Google Scholar 

  26. Wraight CA (2004) Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Front in Biosci 9:309–337

    Article  CAS  Google Scholar 

  27. Zankel KL, Reed DW, Clayton RK (1968) Fluorescence and photochemical quenching in photosynthetic reaction centers. Proc Natl Acad Sci USA 61:1243–1249

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  28. Zhu J, van Stokkum IHM, Paparelli L, Jones MR, Groot ML (2013) Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides. Biophys J 104:2493–2502

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. Zinth W, Wachtveitl J (2005) The first picoseconds in bacterial photosynthesis—ultrafast electron transfer for the efficient conversion of light energy. Chem Phys Chem 6:871–880

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of Dr. Colin A. Wraight (1945–2014) whose pioneering contributions to spectroscopy of bacterial RC have inspired many investigators (including PM). Thanks to Drs. P. Sebban and D. Onidas (University of Paris XI, Faculté d’Orsay, France) for the mutant, to Dr. G. Laczkó (University of Szeged) for stimulating discussions, and to TÁMOP 4.2.2.A-11/1KONV-2012-0060, TÁMOP 4.2.2.B, OTKA K116834, and COST Actions CM1306 for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Péter Maróti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sipka, G., Maróti, P. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides . Photosynth Res 127, 61–68 (2016). https://doi.org/10.1007/s11120-015-0096-y

Download citation

Keywords

  • Purple photosynthetic bacteria
  • Reaction center
  • Bacteriochlorophyll fluorescence
  • Depolarization
  • Electronic excitation transfer
  • Light-induced electron transfer