Skip to main content

Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies

Abstract

We prepared thylakoid membranes from Halomicronema hongdechloris cells grown under white fluorescent light or light from far-red (740 nm) light-emitting diodes, and observed their energy-transfer processes shortly after light excitation. Excitation–relaxation processes were examined by steady-state and time-resolved fluorescence spectroscopies. Two time-resolved fluorescence techniques were used: time-correlated single photon counting and fluorescence up-conversion methods. The thylakoids from the cells grown under white light contained chlorophyll (Chl) a of different energies, but were devoid of Chl f. At room temperature, the excitation energy was equilibrated among the Chl a pools with a time constant of 6.6 ps. Conversely, the thylakoids from the cells grown under far-red light possessed both Chl a and Chl f. Two energy-transfer pathways from Chl a to Chl f were identified with time constants of 1.3 and 5.0 ps, and the excitation energy was equilibrated between the Chl a and Chl f pools at room temperature. We also examined the energy-transfer pathways from phycobilisome to the two photosystems under white-light cultivation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

Chl:

Chlorophyll

DV-Chl:

3,8-Divinyl chlorophyll

LED:

Light-emitting diodes

PBS:

Phycobilisome

PS:

Photosystem

TRFS:

Time-resolved fluorescence spectrum (spectra)

References

  • Akimoto S, Yokono M, Ohmae M, Yamazaki I, Tanaka A, Higuchi M, Tsuchiya T, Miyashita H, Mimuro M (2004) Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga Codium fragile. Chem Phys Lett 390:45–49

    CAS  Article  Google Scholar 

  • Akimoto S, Yokono M, Ohmae M, Yamazaki I, Tanaka A, Higuchi M, Tsuchiya T, Miyashita H, Mimuro M (2005) Ultrafast excitation relaxation dynamics of lutein in solution and in the light-harvesting complexes II isolated from Arabidopsis thaliana. J Phys Chem B 109:12612–12619

    CAS  PubMed  Article  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    CAS  PubMed  Article  Google Scholar 

  • Akimoto S, Teshigahara A, Yokono M, Mimuro M, Nagao R, Tomo T (2014) Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochim Biophys Acta 1837:1514–1521

    CAS  PubMed  Article  Google Scholar 

  • Boardman NK, Thome SW, Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56:586–593

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    CAS  PubMed  Article  Google Scholar 

  • Chen M, Li YQ, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f - a red-absorbing photopigment. FEBS Lett 586:3249–3254

    CAS  PubMed  Article  Google Scholar 

  • Connelly JP, Müller MG, Bassi R, Croce R, Holzwarth AR (1997) Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry 36:281–287

    CAS  PubMed  Article  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    CAS  PubMed  Article  Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Ann Rev Plant Physiol 23:87–112

    CAS  Article  Google Scholar 

  • Govindjee Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Massachusetts, pp 497–537

    Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Boston, pp 1–42

    Chapter  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochim Biophys Acta 1817:1292–1298

    CAS  PubMed  Article  Google Scholar 

  • Li Y, Cai ZL, Chen M (2013) Spectroscopic properties of chlorophyll f. J Phys Chem B 117:11309–11317

    CAS  PubMed  Article  Google Scholar 

  • Mimuro M (2004) Photon capture, exciton migration and trapping and fluorescence emission in cyanobacteria and red algae. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Boston, pp 173–195

    Chapter  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46

    CAS  PubMed  Article  Google Scholar 

  • Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456:27–34

    CAS  PubMed  Article  Google Scholar 

  • Mimuro M, Murakami A, Tomo T, Tsuchiya T, Watabe K, Yokono M, Akimoto S (2011) Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: differences in fluorescence properties with chlorophyll replacement. Biochim Biophys Acta 1807:471–481

    CAS  PubMed  Article  Google Scholar 

  • Murata N, Satoh K (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Massachusetts, pp 137–159

    Google Scholar 

  • Nakayama K, Yamaoka T, Katoh S (1979) Chromatographic separation of photosystems I and II from the thylakoid membrane isolated from a thermophilic blue-green alga. Plant Cell Physiol 20:1565–1576

    CAS  Google Scholar 

  • Nakayama K, Mimuro M, Nishimura Y, Yamazaki I, Okada M (1994) Kinetic analysis of energy transfer processes in LHC II isolated from a siphonous green alga Bryopsis maxima with use of a picosecond fluorescence spectroscopy. Biochim Biophys Acta 1188:117–124

    CAS  Article  Google Scholar 

  • Papagiannakis E, van Stokkum IHM, Fey H, Büchel C, van Grondelle R (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin–chlorophyll protein of diatoms. Photosynth Res 86:241–250

    CAS  PubMed  Article  Google Scholar 

  • Rüdiger W, Schoch S (1988) Chlorophylls. In: Goodwin TW (ed) Plant pigments. Academic Press, Massachusetts, pp 1–59

    Google Scholar 

  • Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E (2008) Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. Biochim Biophys Acta 1777:1400–1408

    CAS  PubMed  Article  Google Scholar 

  • Schlodder E, Cetin M, Byrdin M, Terekhova IV, Karapetyan NV (2005) P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochim Biophys Acta 1706:53–67

    CAS  PubMed  Article  Google Scholar 

  • Shubin VV, Murthy SDS, Karapetyan NV, Mohanty P (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophys Acta 1060:28–36

    CAS  Article  Google Scholar 

  • Shubin VV, Bezsmertnaya IN, Karapetyan NV (1992) Isolation from Spirulina membranes of two photosystem I-type complexes one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett 309:340–342

    CAS  PubMed  Article  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 283:18198–18209

    CAS  PubMed  Article  Google Scholar 

  • Tomo T, Shinoda T, Chen M, Allakhverdiev SI, Akimoto S (2014) Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1837:1484–1489

    CAS  PubMed  Article  Google Scholar 

  • van Grondelle R, Gobets B (2004) Transfer and trapping of excitations in plant photosystems. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Boston, pp 107–132

    Chapter  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65

    CAS  Article  Google Scholar 

  • Willows RD, Li Y, Scheer H, Chen M (2013) Structure of chlorophyll f. Org Lett 15:1588–1590

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education of Japan (23370013 to SA, 22370017 to SA and TT, and 24370025, 26220801 to TT), a grant from JST PRESTO (TT), and a Grant from the Australian Research Council’s Discovery Projects funding scheme (project number DP12101360 to TT). MC holds an Australian Research Council Future Fellowship (FT120100464), and MC thanks the Australian Research Council for support (DP120100286, CE140100015). SIA was supported by Grants from the Russian Science Foundation (No: 14-14-00039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akimoto, S., Shinoda, T., Chen, M. et al. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. Photosynth Res 125, 115–122 (2015). https://doi.org/10.1007/s11120-015-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0091-3

Keywords

  • Energy transfer
  • Fluorescence
  • Light adaptation
  • Chlorophyll f
  • Pigment-protein complex
  • Time-resolved spectroscopy