Skip to main content
Log in

Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Car:

Carotenoid

Chl:

Chlorophyll

FDAS:

Fluorescence decay-associated spectra

PBS:

Phycobilisome

PC:

Phycocyanin

PEC:

Phycoerythrocyanin

PS:

Photosystem

TRFS:

Time-resolved fluorescence spectra

References

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Yokono M, Aikawa S, Kondo A (2013) Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynth Res 117:235–243

    Article  CAS  PubMed  Google Scholar 

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69:114–120

    CAS  Google Scholar 

  • Bruce D, Biggins J, Steiner T, Thewalt M (1985) Mechanism of the light state transition in photosynthesis—IV. Picosecond fluorescence spectroscopy of Anacystis nidulans and Porphyridium cruentum in state 1 and state 2 at 77 K. Biochim Biophys Acta 806:237–246

    Article  CAS  Google Scholar 

  • Butler WL, Kitajima M (1975) Energy transfer between photosystem II and photosystem I in chloroplasts. Biochim Biophys Acta 396:72–85

    Article  CAS  PubMed  Google Scholar 

  • Collier JL, Herbert SK, Fork DC, Grossman AR (1994) Changes in the cyanobacterial photosynthetic apparatus during acclimation to macronutrient deprivation. Photosynth Res 42:173–183

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Govindjee (1966) Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J 6:611–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6:557–563

    Article  CAS  PubMed  Google Scholar 

  • Gombos Z, Vigh L (1986) Primary role of the cytoplasmic membrane in thermal acclimation evidenced in nitrate-starved cells of the blue-green alga, Anacystis nidulans. Plant Physiol 80:415–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haselkorn R (1978) Heterocysts. Ann Rev Plant Physiol 29:319–344

    Article  CAS  Google Scholar 

  • Jensen TE, Rachlin JW (1984) Effect of varying sulphur deficiency on structural components of a cyanobacterium Synechococcus leopoliensis: a morphometric study. Cytobios 41:35–46

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kumazaki S, Akari M, Hasegawa M (2013) Transformation of thylakoids membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging. Plant Physiol 161:1321–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lau RH, Mackenzie MM, Doolittle WF (1977) Phycocyanin synthesis and degradation in the blue-green bacterium Anacystis nidulans. J Bacteriol 132:771–778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux CW (1992) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim Biophys Acta 1100:285–292

    Article  CAS  Google Scholar 

  • Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Satoh K (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll–protein complexes. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 137–159

    Google Scholar 

  • Owens TG (1996) Processing of excitation energy by antenna pigments. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Google Scholar 

  • Peter P, Sarma AP, Hasan MDA, Murthy SDS (2010) Studies on the Impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium, Spirulina platensis: identification of target phycobiliprotein under nitrogen chlorosis. Bot Res Int 3:30–34

    CAS  Google Scholar 

  • Sugiura K, Itoh S (2012) Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells. Plant Cell Physiol 53:1492–1506

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Mochimaru M, Maoka T, Katoh H (2005) Myxol and 4-ketomyxol 2′-fucosides, not rhamnosides, from Anabaena sp. PCC 7120 and Nostoc punctiforme PCC 73102, and proposal for the biosynthetic pathway of carotenoids. Plant Cell Physiol 46:497–504

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Mochimaru M, Maoka T (2006) Presence of free myxol and 4-hydroxymyxol and absence of myxol glycosides in Anabaena variabilis ATCC 29413, and proposal of a biosynthetic pathway of carotenoids. Plant Cell Physiol 47:211–216

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–61

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth Res 116:265–276

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Semchonok D, Webber-Birungi MT, Ehira S, Kondo K, Narikawa R, Ohmori M, Boekema EJ, Ikeuchi M (2014) Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. PNAS 111:2512–2517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhao J, Zhang J, Jiang L (1999) Phycobilisome from Anabaena variabilis Kütz. and its model conjugates. Photosynthetica 36:163–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. M. Ikeuchi and Dr. M. Watanabe for providing technical information about the culturing procedure. This work was supported in part by a Grant-in-Aid for Scientific Research from JSPS (No. 23370013) to S. Akimoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, A., Aikawa, S., Kondo, A. et al. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. Photosynth Res 125, 191–199 (2015). https://doi.org/10.1007/s11120-015-0089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0089-x

Keywords

Navigation