Supramolecular organization of fucoxanthin–chlorophyll proteins in centric and pennate diatoms

Abstract

Fucoxanthin–chlorophyll proteins (FCP) are the major light-harvesting proteins of diatom algae, a major contributor to marine carbon fixation. FCP complexes from representatives of centric (Cyclotella meneghiniana) and pennate (Phaeodactylum tricornutum) diatoms were prepared by sucrose gradient centrifugation and studied by means of electron microscopy followed by single particle analysis. The oligomeric FCP from a centric diatom were observed to take the form of unusual chain-like or circular shapes, a very unique supramolecular assembly for such antennas. The existence of the often disputed oligomeric form of FCP in pennate diatoms has been confirmed. Contrary to the centric diatom FCP, pennate diatom FCP oligomers are very similar to oligomeric antennas from related heterokont (Stramenopila) algae. Evolutionary aspects of the presence of novel light-harvesting protein arrangement in centric diatoms are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

Chl:

Chlorophyll

MES:

2-(N-morpholino)ethanesulfonic acid

DM:

n-Dodecyl-β-d-maltoside

TEM:

Transmission electron microscopy

FCP:

Fucoxanthin–chlorophyll proteins

LHC:

Light-harvesting complex

PSI:

Photosystem I

PSII:

Photosystem II

SDS-PAGE:

Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate

CD:

Circular dichroism

References

  1. Barros T, Kühlbrandt W (2009) Crystallisation, structure and function of plant light-harvesting Complex II. Biochim Biophys Acta 1787:753–772

    CAS  PubMed  Article  Google Scholar 

  2. Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    CAS  PubMed  Article  Google Scholar 

  3. Boekema EJ, van Roon H, Calkoen F, Bassi R, Dekker JP (1999) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239

    CAS  PubMed  Article  Google Scholar 

  4. Büchel C (2003) Fucoxanthin–chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    PubMed  Article  Google Scholar 

  5. Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62:886–897

    CAS  PubMed  Article  Google Scholar 

  6. Dekker JP, van Roon H, Boekema EJ (1999) Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes. FEBS Lett 449:211–214

    CAS  PubMed  Article  Google Scholar 

  7. Dittami SM, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 10:365

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260:335–345

    CAS  PubMed  Article  Google Scholar 

  9. Falciatore A, Bowler C (2002) Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol 53:109–130

    CAS  PubMed  Article  Google Scholar 

  10. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    CAS  PubMed  Article  Google Scholar 

  11. Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: integrating terrestial and oceanic components. Science 281:237–240

    CAS  PubMed  Article  Google Scholar 

  12. Frank J, Radermacher M, Penczek P, Zhu J, Li YH, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    CAS  PubMed  Article  Google Scholar 

  13. Fujii R, Kita M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Cogdell RJ, Hashimoto H (2012) Isolation and purification of the major photosynthetic antenna, Fucoxanthin–Chl a/c protein, from cultured discoid germilings of the brown Alga, Cladosiphon okamuranus TOKIDA (Okinawa Mozuku). Photosynth Res 111:157–163

    CAS  PubMed  Article  Google Scholar 

  14. Gardian Z, Bumba L, Schrofel A, Herbstova M, Nebesarova J, Vacha F (2007) Organisation of Photosystem I and Photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767:725–731

    CAS  PubMed  Article  Google Scholar 

  15. Gardian Z, Tichy J, Vacha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108:25–32

    CAS  PubMed  Article  Google Scholar 

  16. Grouneva I, Rokka A, Aro EM (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353

    CAS  PubMed  Article  Google Scholar 

  17. Guglielmi G, Lavaud J, Rousseau B, Etienne AL, Houmard J, Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272:4339–4348

    CAS  PubMed  Article  Google Scholar 

  18. Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin–chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235

    CAS  PubMed  Article  Google Scholar 

  19. Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin–chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052

    CAS  PubMed  Article  Google Scholar 

  20. Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1827:303–310

    CAS  PubMed  Article  Google Scholar 

  21. Harauz G, Boekema EJ, van Heel M (1988) Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol 164:35–49

    CAS  PubMed  Article  Google Scholar 

  22. Hoffman GE, Sanchez Puerta MV, Delwiche CF (2011) Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol Biol 11:101

    PubMed Central  PubMed  Article  Google Scholar 

  23. Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y, Itoh S, Koike H, Satoh K (2013) Two types of fucoxanthin–chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. Biochim Biophys Acta 1827:529–539

    CAS  PubMed  Article  Google Scholar 

  24. Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C (2010) Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. J Exp Bot 61:3079–3087

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Katoh T, Ehara T (1990) Supramolecular assembly of fucoxanthin–chlorophyll-protein complexes isolated from a brown alga, Petalonia fascia. Electron microscopic studies. Plant Cell Physiol 31:439–447

    CAS  Google Scholar 

  26. Katoh T, Mimuro M, Takaichi S (1989) Light-harvesting particles isolated from a brown alga, Dictyota dichotoma—a supramolecular assembly of fucoxanthin–chlorophyll-protein complexes. Biochim Biophys Acta 976:233–240

    CAS  Article  Google Scholar 

  27. Kooistra WHCF, Gersonde R, Medlin LK, Mann DG (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic Press-Elsevier, Amsterdam, pp 207–249

    Google Scholar 

  28. Kouril R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    CAS  PubMed  Article  Google Scholar 

  29. Lang M, Kroth PG (2001) Diatom fucoxanthin chlorophyll a/c-binding protein (FCP) and land plant light-harvesting proteins use a similar pathway for thylakoid membrane insertion. J Biol Chem 276:7985–7991

    CAS  PubMed  Article  Google Scholar 

  30. Lepetit B, Volke D, Szabó M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822

    CAS  PubMed  Article  Google Scholar 

  31. Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257

    CAS  PubMed  Article  Google Scholar 

  32. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    CAS  PubMed  Article  Google Scholar 

  33. Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117:281–288

    CAS  PubMed  Article  Google Scholar 

  34. Ogawa T, Vernon LP (1971) Increased content of cytochromes 554 and 562 in Anabaena variabilis cells grown in the presence of diphenylamine. Biochim Biophys Acta 226:88–97

    CAS  PubMed  Article  Google Scholar 

  35. Papagiannakis E, HM van Stokkum I, Fey H, Büchel C, van Grondelle R (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin–chlorophyll protein of diatoms. Photosynth Res 86:241–250

    CAS  PubMed  Article  Google Scholar 

  36. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    CAS  PubMed  Article  Google Scholar 

  37. Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c(2) proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656

    CAS  PubMed  Article  Google Scholar 

  38. Pyszniak A, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin–chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217

    CAS  Article  Google Scholar 

  39. Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Article  Google Scholar 

  40. Tichy J, Gardian Z, Bina D, Konik P, Litvin R, Herbstova M, Pain A, Vacha F (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729

    CAS  PubMed  Article  Google Scholar 

  41. van Heel M, Frank J (1981) Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6:187–194

    PubMed  Google Scholar 

  42. Walz T, Jamieson SJ, Bowers CM, Bullough PA, Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. J Mol Biol 282:833–845

    CAS  PubMed  Article  Google Scholar 

  43. Westermann M, Rhiel E (2005) Localisation of fucoxanthin chlorophyll a/c-binding polypeptides of the centric diatom Cyclotella cryptica by immuno-electron microscopy. Protoplasma 225:217–223

    CAS  PubMed  Article  Google Scholar 

  44. Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R (2009) The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J Biol Chem 284:7803–7810

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Wientjes E, Drop B, Kouril R, Boekema EJ, Croce R (2013) During state 1 to state 2 transition in Arabidopsis thaliana the Photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 288(46):32821–32826

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge institutional support RVO:60077344 as well as financial support of the Czech Science Foundation projects P205/11/1164 (Z. G.) and P501/12/G055 (R. L., D. B. and F. V.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to František Vácha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 445 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gardian, Z., Litvín, R., Bína, D. et al. Supramolecular organization of fucoxanthin–chlorophyll proteins in centric and pennate diatoms. Photosynth Res 121, 79–86 (2014). https://doi.org/10.1007/s11120-014-9998-3

Download citation

Keywords

  • Photosynthesis
  • Transmission electron microscopy
  • Fucoxanthin–chlorophyll proteins
  • Diatoms
  • Light harvesting
  • Thylakoid membrane