Skip to main content
Log in

Structural characteristics that stabilize or destabilize different assembly levels of phycocyanin by urea

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Phycocyanin is one of the two phycobiliproteins always found in the Phycobilisome antenna complex. It is always situated at the ends of the peripheral rods, adjacent to the core cylinders composed of allophycocyanin. The basic phycocyanin monomer is an (αβ) dimer of globin-like subunits with three covalently linked phycocyanobilin cofactors. Monomers assemble further into trimers, hexamers, and rods which include non-pigmented linker proteins. Upon isolation in low ionic strength solution, rods quickly disintegrate into phycocyanin trimers, which lose contacts with other phycobiliproteins and with the linker proteins. The trimers, however, are quite stable and only the presence of high concentrations of chaotropic agents (such as urea), very acidic solutions, or elevated temperatures induces monomerization, followed by separation between the subunits. We have recently determined the crystal structures of phycocyanin from the thremophilic cyanobacterium Thermosynechococcus vulcanus in the presence of 2 or 4 M urea, and shown that 4 M urea monomerizes the phycocyanin trimers. In this paper, we will describe the phycocyanin structures in 2 and 4 M urea more completely. By mapping out the urea positions, we describe the structural elements within the trimeric interaction interface that may be interrupted by the presence of 4 M urea. In addition, we also identify what are the structural characteristics that prevent 4 M urea from inducing subunit dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

GuCl:

Gunidinium Hydrochloride

LP:

Linker protein

PBP:

Phycobiliprotein

PBS:

Phycobilisome

PC:

Phycocyanin

PCB:

Phycocyanobilin

PE:

Phycoerythrin

PEC:

Phycoerythrocyanin

PSII:

Photosystem II

Tv-PBS:

T. vulcanus phycobilisome

Tv-PC-2 MU:

T. vulcanus phycocyanin treated with 2 M urea

Tv-PC-4 MU:

T. vulcanus phycocyanin treated with 4 M urea

References

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32

    Article  CAS  PubMed  Google Scholar 

  • Adir N, Lerner N (2003) The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomes. J Biol Chem 278:25926–25932

    Article  CAS  PubMed  Google Scholar 

  • Adir N, Dines M, Klartag M, McGregor A, Melamed-Frank M (2006) Assembly and disassembly of phycobilisomes. In: Shively JM (ed) Microbiology monographs: inclusions in prokaryotes, vol 2. Springer, Berlin, pp 47–77

    Google Scholar 

  • David L, Marx A, Adir N (2011) High-resolution crystal structures of trimeric and rod phycocyanin. J Mol Biol 405:201–213

    Article  CAS  PubMed  Google Scholar 

  • Emseley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr 60:2126-2132

    Google Scholar 

  • Erokhina LG, Krasnovskii AA (1971) The effects of denaturing agents on the spectral properties of phycocyanin. Mol Biol 5:319–326

    CAS  PubMed  Google Scholar 

  • Gantt E, Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54:313–324

    Article  CAS  Google Scholar 

  • Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1–4

    CAS  PubMed  Google Scholar 

  • Kupka M, Scheer H (2008) Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions 1. Equilibrium experiments. Biochim Biophys Acta 1777:94–103

    Article  CAS  PubMed  Google Scholar 

  • Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142

    Article  CAS  PubMed  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  CAS  PubMed  Google Scholar 

  • Marx A, Adir N (2013) Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim Biophys Acta 1827:311–318

    Article  CAS  PubMed  Google Scholar 

  • McGregor A, Klartag M, David L, Adir N (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 384:406–421

    Article  CAS  PubMed  Google Scholar 

  • Moelbert S, Normand B, De Los Rios P (2004) Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability. Biophys Chem 112:45–57

    Article  CAS  PubMed  Google Scholar 

  • Murphy RF, O’Carra P (1970) Reversible denaturation of C-phycocyanin. Biochim Biophys Acta 214:371–373

    Article  CAS  PubMed  Google Scholar 

  • Norrman M, Schluckebier G (2007) Crystallographic characterization of two novel crystal forms of human insulin induced by chaotropic agents and a shift in pH. BMC Struct Biol 7:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Pike AC, Acharya KR (1994) A structural basis for the interaction of urea with lysozyme. Protein Sci 3:706–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thoren KL, Connell KB, Robinson TE, Shellhamer DD, Tammaro MS, Gindt YM (2006) The free energy of dissociation of oligomeric structure in phycocyanin is not linear with denaturant. Biochemistry 45:12050–12059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth Res 116(2–3):265–276

    Article  CAS  PubMed  Google Scholar 

  • Zilinskas BA, Glick RE (1981) Noncovalent Intermolecular forces in phycobilisomes of porphyridium cruentum. Plant Physiol 68:447–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the US-Israel Bi-National Science Foundation (2009406) and the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (1576/12). We also acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP) and The Technion Russell Berrie Nanotechnology Institute (RBNI). We gratefully thank the staff of the European Synchrotron Radiation Facility (beamlines ID-23-1) for provision of synchrotron radiation facilities and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Adir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, A., Adir, N. Structural characteristics that stabilize or destabilize different assembly levels of phycocyanin by urea. Photosynth Res 121, 87–93 (2014). https://doi.org/10.1007/s11120-014-9996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9996-5

Keywords

Navigation