Skip to main content

Advertisement

Log in

Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria

Photosynthesis Research Aims and scope Submit manuscript

Abstract

We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Aghtar M, Liebers J, Strümpfer J, Schulten K, Kleinekathöfer U (2012) Juxtaposing density matrix and classical path-based wave packet dynamics. J Chem Phys 136(21):214101

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson PW (1954) A mathematical model for the narrowing of spectral lines by exchange or motion. J Phys Soc Jpn 9:316–339

    Article  Google Scholar 

  • Balaban TS (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 38(8):612–623

    Article  CAS  PubMed  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. iii. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Berkelbach TC, Markland TE, Reichman DR (2012) Reduced density matrix hybrid approach: application to electronic energy transfer. J Chem Phys 136(8):084104

    Article  PubMed  Google Scholar 

  • Blankenship RE, Olson JM, Miller M (2004) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan M, Bauer CE (eds) Anoxygenic photosynthetic bacteria, Springer, Netherlands, pp 399–435

    Chapter  Google Scholar 

  • Borrego C, Gerola P, Miller M, Cox R (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynt Res 59:159–166

    Article  CAS  Google Scholar 

  • Bradforth SE, Jimenez R, van Mourik F, van Grondelle R, Fleming GR (1995) Excitation transfer in the core light-harvesting complex (lh-1) of rhodobacter sphaeroides: an ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99:16179–16191

    Article  CAS  Google Scholar 

  • Breuer HP, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, New York

    Google Scholar 

  • Causgrove T, Brune D, Wang J, Wittmershaus B, Blankenship R (1990) Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria. Photosynth Res 26:39–48

    CAS  PubMed  Google Scholar 

  • Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084,106

    Article  Google Scholar 

  • Chen X, Silbey RJ (2011) Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency. J Phys Chem B 115(18):5499–5509. doi:10.1021/jp111068w

    Article  CAS  PubMed  Google Scholar 

  • Collini E, Scholes GD (2009) Electronic and vibrational coherences in resonance energy transfer along meh-ppv chains at room temperature. J Phys Chem A 113:4223–4241

    Article  CAS  PubMed  Google Scholar 

  • Damjanovíc A, Kosztin I, Kleinekathöfer U, Schulten K (2002) Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry and polaron model study. Phys Rev E 65:031,919

    Article  Google Scholar 

  • Donehue JD, Varnavski OP, Cemborski R, Iyoda M, Goodson T (2011) Probing coherence in synthetic cyclic light-harvesting pigments. J Am Chem Soc 133:4819–4828

    Article  CAS  PubMed  Google Scholar 

  • Dostál J, Mančal T, Augulis Rn, Vácha F, Pšenčík J, Zigmantas D (2012) Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J Am Chem Soc 134(28):11611–11617

    Article  PubMed  Google Scholar 

  • Eisele DM, Cone CW, Bloemsma EA, Vlaming SM, van der Kwaak CGF, Silbey RJ, Bawendi MG, Knoester J, Rabe JP, Bout DAV (2012) Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat Chem 4:655–662

    Article  CAS  PubMed  Google Scholar 

  • Ern V, Suna A, Tomkiewicz Y, Avakian P, Groff RP (1972) Temperature dependence of triplet-exciton dynamics in anthracene crystals. Phys Rev B 5:3222–3234

    Article  Google Scholar 

  • Fetisova ZG, Mauring K, Taisova AS (1994) Strongly exciton-coupled bchl e chromophore system in the chlorosomal antenna of intact cells of the green bacterium Chlorobium phaeovibrioides: a spectral hole burning study. Photosyn Res 41:205–210

    Article  CAS  PubMed  Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K, Trinkunas G (2009) Excitonic polarons in quasi-one-dimensional lh1 and lh2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: a wavelength-dependent selective spectroscopy study. Chem Phys 357:102–112

    Article  CAS  Google Scholar 

  • Fujita T, Brookes JC, Saikin SK, Aspuru-Guzik A (2012) Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria. J Phys Chem Lett 3:2357–2361

    Article  CAS  Google Scholar 

  • Furumaki S, Vacha F, Habuchi S, Tsukatani Y, Bryant DA, Vacha M (2011) Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. J Am Chem Soc 133(17):6703–6710

    Article  CAS  PubMed  Google Scholar 

  • Furumaki S, Yabiku Y, Habuchi S, Tsukatani Y, Bryant DA, Vacha M (2012) Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria. J Phys Chem Lett 3(23):3545–3549

    Article  CAS  Google Scholar 

  • Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganapathy S, Oostergetel GT, Reus M, Tsukatani Y, Gomez Maqueo Chew A, Buda F, Bryant DA, Holzwarth AR, de Groot HJM (2012) Structural variability in wild-type and bchq bchr mutant chlorosomes of the green sulfur bacterium chlorobaculum tepidum. Biochemistry 51(22):4488–4498

    Article  CAS  PubMed  Google Scholar 

  • Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c c-82 and c-121 methyltransferases are essential for adaptation to low light in chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  PubMed  Google Scholar 

  • Goodson T (2005) Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc Chem Res 38:99–107

    Article  CAS  PubMed  Google Scholar 

  • Haken H, Reineker P (1973) The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption. Z Phys 249:253–268

    Article  Google Scholar 

  • Haken H, Strobl G (1973) Exactly solvable model for coherent and incoherent exciton motion. Z Phys 262:135–148

    Article  CAS  Google Scholar 

  • Hasegawa J, Ozeki Y, Ohkawa K, Hada M, Nakatsuji H (1998) Theoretical study of the excited states of chlorin, bacteriochlorin, pheophytin a, and chlorophyll a by the sac/sac-ci method. J Phys Chem B 102(7):1320–1326

    Article  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Hohmann-Marriott M, Blankenship R, Roberson R (2005) The ultrastructure of chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154

    Article  CAS  PubMed  Google Scholar 

  • Huster MS, Smith KM (1990) Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d. Biochemistry 29(18):4348–4355

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki A, Fleming GR (2011) On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. J Phys Chem B 115:6227–6233

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki A, Calhoun TR, Schau-Cohen GS, Fleming GR (2010) Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys Chem Chem Phys 12:7319–7337

    Article  CAS  PubMed  Google Scholar 

  • Kolli A, Nazir A, Olaya-Castro A (2011) Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J Chem Phys 135(15):154112

    Article  PubMed  Google Scholar 

  • Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of lh2 by the ab initio transition density cube method. J Phys Chem B 102(27):5378–5386

    Article  CAS  Google Scholar 

  • Kubo R (1954) Note on the stochastic theory of resonance absorption. J Phys Soc Jpn 9:935–944

    Article  CAS  Google Scholar 

  • Lee CT, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2006) Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Phys Chem Chem Phys 8:663–687

    Article  CAS  PubMed  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2008) Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynt Res 96:227–245

    Article  CAS  Google Scholar 

  • Linnanto JM, Korppi-Tommola JEI (2013) Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria. J Phys Chem B 117(38):11144–11161. doi:10.1021/jp4011394

    Article  CAS  PubMed  Google Scholar 

  • Madjet ME, Abdurahman A, Renger T (2006) Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110(34):17268–17281

    Article  CAS  PubMed  Google Scholar 

  • Martiskainen J, Linnanto J, Kananavičius R, Lehtovuori V, Korppi-Tommola J (2009) Excitation energy transfer in isolated chlorosomes from chloroflexus aurantiacus. Chem Phys Lett 477:216–220

    Article  CAS  Google Scholar 

  • Martiskainen J, Linnanto J, Aumanen V, Myllyperkiö P, Korppi-Tommola J (2012) Excitation energy transfer in isolated chlorosomes from chlorobaculum tepidum and prosthecochloris aestuarii. Photochem Photobiol 88:675–683

    Article  CAS  PubMed  Google Scholar 

  • May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems, 3rd edn. Wiley, Berlin

    Book  Google Scholar 

  • Meier T, Zhao Y, Chernyak V, Mukamel S (1997) Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J Chem Phys 107:3876–3893

    Article  CAS  Google Scholar 

  • Miyatake T, Tamiaki H (2010) Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems. Coord Chem Rev 254:2593–2602

    Article  CAS  Google Scholar 

  • Mochizuki Y, Koikegami S, Amari S, Segawa K, Kitaura K, Nakano T (2005) Configuration interaction singles method with multilayer fragment molecular orbital scheme. Chem Phys Lett 406:283–288

    Article  CAS  Google Scholar 

  • Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  • Niedzwiedzki D, Blankenship R (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238

    Article  CAS  PubMed  Google Scholar 

  • Okiyama Y, Watanabe H, Fukuzawa K, Nakano T, Mochizuki Y, Ishikawa T, Ebina K, Tanaka S (2009) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. ii. towards an improvement of force fields used for classical molecular dynamics simulations. Chem Phys Lett 467:417–423

    Article  CAS  Google Scholar 

  • Olbrich C, Kleinekathöfer U (2010) Time-dependent atomistic view on the electronic relaxation in light-harvesting system ii. J Phys Chem B 114(38):12,427–12,437

    Article  CAS  Google Scholar 

  • Olbrich C, Jansen THC, Liebers J, Aghtar M, Strümpfer J, Schulten K, Knoester J, Kleinekathöfer U (2011a) J Phys Chem B 115:8609–8621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011b) Theory and simulation of the environmental effects on fmo electronic transitions. J Phys Chem Lett 2(14):1771–1776

    Article  CAS  Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75

    Article  CAS  Google Scholar 

  • Olson J (2004) The fmo protein. Photosynth Res 80:181–187

    Article  CAS  PubMed  Google Scholar 

  • Oostergetel GT, Reus M, Chew AGM, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439

    Article  CAS  PubMed  Google Scholar 

  • Oostergetel GT, van Amerongen H, Boekema EJ (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104:245–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orf GS, Blankenship RE (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331. doi:10.1007/s11120-013-9869-3

    Article  CAS  PubMed  Google Scholar 

  • Overmann J, Garcia-Pichel F (2006) The phototrophic way of life. In: Rosenberg E, Stackebrandt E, Thompson F, Lory S, DeLong EF (eds) Prokaryotes, vol 2, 3rd edn., Springer, New York, pp 32–85

    Chapter  Google Scholar 

  • Parkhill JA, Tempel DG, Aspuru-Guzik A (2012) Exciton coherence lifetimes from electronic structure. J Chem Phys 136:104,510

    Article  Google Scholar 

  • Parusel ABJ, Grimme S (2000) A theoretical study of the excited states of chlorophyll a and pheophytin a. J Phys Chem B 104(22):5395–5398

    Article  CAS  Google Scholar 

  • Pedersen MO, Linnanto J, Frigaard NU, Nielsen NC, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243

    Article  CAS  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with namd. J Comp Chem 26:1781–1802

    Article  CAS  Google Scholar 

  • Prokhorenko VI, DB Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prokhorenko VI, Holzwarth AR, Müller MG, Schaffner K, Miyatake T, Tamiaki H (2002) Energy transfer in supramolecular artificial antennae units of synthetic zinc chlorins and co-aggregated energy traps. A time-resolved fluorescence study. J Phys Chem B 106(22):5761–5768

    Article  CAS  Google Scholar 

  • Pšenčík J, Polívka T, Němec P, Dian J, Kudrna J, Malý P, Hála J (1998) Fast energy transfer and exciton dynamics in chlorosomes of the green sulfur bacterium chlorobium tepidum. J Phys Chem A 102(23):4392–4398

    Article  Google Scholar 

  • Pšenčík J, Ma YZ, Arellano J, Garcia-Gil J, Holzwarth A, Gillbro T (2002) Excitation energy transfer in chlorosomes of chlorobium phaeobacteroides strain cl1401: the role of carotenoids. Photosynth Res 71:5–18

    Article  PubMed  Google Scholar 

  • Pšenčík J, Ma YZ, Arellano JB, Halá J, Gillbro T (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of chlorobium phaeobacteroides. Biophys J 84:1161–1179

    Article  PubMed Central  PubMed  Google Scholar 

  • Pšenčík J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87(2):1165–1172

    Article  PubMed Central  PubMed  Google Scholar 

  • Rätsep M, Freiberg A (2007) Electron-phonon and vibronic couplings in the fmo bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J Lumin 127:251–259

    Article  Google Scholar 

  • Röger C, Miloslavina Y, Brunner D, Holzwarth AR, Würthner F (2008) Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. J Am Chem Soc 130(18):5929–5939

    Article  PubMed  Google Scholar 

  • Saga Y, Wazawa T, Mizoguchi T, Ishii Y, Yanagida T, Tamiaki H (2002) Spectral heterogeneity in single light-harvesting chlorosomes from green sulfur photosynthetic bacterium Chlorobium tepidum. Photochem Photobiol 75:433–436

    Article  CAS  PubMed  Google Scholar 

  • Saga Y, Harada J, Hattori H, Kaihara K, Hirai Y, Oh-oka H, Tamiaki H (2008) Spectroscopic properties and bacteriochlorophyll c isomer composition of extramembranous light-harvesting complexes in the green sulfur photosynthetic bacterium chlorobium tepidum and its ct0388-deleted mutant under vitamin b12-limited conditions. Photochem Photobiol Sci 7:1210–1215

    Article  CAS  PubMed  Google Scholar 

  • Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Quantum entanglement in photosynthetic light-harvesting complexes. Nat Phys 6:462–467

    Article  CAS  Google Scholar 

  • Savikhin S, Zhu Y, Lin S, Blankenship RE, Struve WS (1994) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium chloroflexus aurantiacus. J Phys Chem 98(40):10,322–10,334

    Article  CAS  Google Scholar 

  • Savikhin S, van Noort PI, Zhu Y, Lin S, Blankenship RE, Struve WS (1995) Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phy 194:245–258

    Article  CAS  Google Scholar 

  • Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA Jr, Lochan RC, Wang T, Beran GJ, Besley NA, Herbert JM, Yeh Lin C, Van Voorhis T, Hung Chien S, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Min Rhee Y, Ritchie J, Rosta E, David Sherrill C, Simmonett AC, Subotnik JE, LeeWoodcock H III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Saga Y, Tamiaki H, Itoh S (2006) Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria. Biophys J 91:3787–3796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A (2012) Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. Biophys J 102:649–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song J, Gao F, Liang W (2011) How does the nonlocal hf exchange influence the electron excitation of bacteriochlorophyll and its assembly. Comput Theor Chem 965(1):53–59

    Article  CAS  Google Scholar 

  • Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of chloroflexus aurantiacus. Arch Microbiol 119:269–277

    Article  Google Scholar 

  • Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) Accelerating molecular modeling applications with graphics processors. J Comp Chem 28:2618–2640

    Article  CAS  Google Scholar 

  • Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A (2013) Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 105(6):1346–1356

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Camacho R, Thomsson D, Reus M, Holzwarth AR, Scheblykin IG (2011) Organization of bacteriochlorophylls in individual chlorosomes from chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. J Am Chem Soc 133(43):17192–17199

    Article  CAS  PubMed  Google Scholar 

  • Timpmann K, Rätsep M, Hunter CN, Freiberg A (2004) Emitting excitonic polaron states in core lh1 and peripheral lh2 bacterial light-harvesting complexes. J Phys Chem B 108(29):10581–10588

    Article  CAS  Google Scholar 

  • Valleau S, Eisfeld A, Aspuru-Guzik A (2012) On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. J Chem Phys 137(22):224103

    Article  PubMed  Google Scholar 

  • Van Kampen NG (2007) Stochastic processes in physics and chemistry. Elsevier, North-Holland personal library

    Google Scholar 

  • Wang J, Wolf RM, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki I, Akimoto S, Yamazaki T, S Sato YS (2002) Oscillatory excitation transfer in dithiaanthracenophane: quantum beat in a coherent photochemical process in solution. J Phys Chem A 106:2122–2128

    Article  CAS  Google Scholar 

  • Zare R (1988) Angular momentum. Wiley-Interscience, New York

    Google Scholar 

  • Zhu F, Galli C, Hochstrasser RM (1993) The real-time intramolecular electronic excitation transfer dynamics of 9’,9-bifluorene and 2’,2-binaphthyl in solution. J Chem Phys 98

Download references

Acknowledgment

The authors would like to thank Prof. Huub J. M. de Groot for fruitful discussions and the donation of the syn-anti chlorosome configuration template. We further appreciate Stéphanie Valleau and Prof. Jeongho Kim for very useful discussions and Nicolas Sawaya for the calculations of the CD spectra. T.F. thanks John Parkhill for advice on the calculations of the anisotropy decay and Yoshio Okiyama for providing a module of the optimally weighted charges. T. F., J. H., and A. A.-G. acknowledge support from the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences under award DE-SC0001088. J. C. B. acknowledges support from Welcome Trust UK. S. K. S. and A. A.-G. also acknowledge Defense Threat Reduction Agency grant HDTRA1-10-1-0046. Further, A. A.-G. is grateful for the support from Defense Advanced Research Projects Agency grant N66001-10-1-4063, Camille and Henry Dreyfus Foundation, and Alfred P. Sloan Foundation. A. A.-G. also acknowledges generous support from the Corning Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takatoshi Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, T., Huh, J., Saikin, S.K. et al. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Photosynth Res 120, 273–289 (2014). https://doi.org/10.1007/s11120-014-9978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9978-7

Keywords

Navigation