Skip to main content
Log in

A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis

  • Emerging Techniques
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chaetoceros gracilis belongs to the centric diatoms, and has recently been used in basic research on photosynthesis. In addition, it has been commercially used in fisheries and is also attracting interest as a feedstock for biofuels production and biorefinery. In this study, we developed an efficient genetic transformation system for C. gracilis. The diatom cells were transformed via multi-pulse electroporation using plasmids containing various promoters to drive expression of the nourseothricin acetyltransferase gene (nat) as a selectable marker. The transformation efficiency reached ~400 positive transgenic clones per 108 recipient cells, which is the first example of successful transformation with electroporation in a centric diatom species. We further produced two expression vectors: the vector pCgLhcr5p contains the light-dependent promoter of a fucoxanthin chlorophyll a/c binding protein gene and the vector pCgNRp contains the inducible promoter of a nitrate reductase gene to drive the expression of introduced genes. In both vectors, an acetyl-CoA acetyltransferase promoter drives nat gene expression for antibiotic selection. Stable integration and expression of reporter genes, such as the firefly luciferase and green fluorescent protein Azami–Green genes, were observed in transformed C. gracilis cells. This efficient and stable transformation system for C. gracilis will enable both functional analysis of diatom-specific genes and strain improvement for further biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    CAS  PubMed  Google Scholar 

  • Araujo GS, Matos LJ, Gonçalves LR, Fernandes FA, Farias WR (2011) Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol 102:5248–5250

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D, Grossman A (1993) Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 21:4458–4466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–333

    Article  CAS  PubMed  Google Scholar 

  • Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831. doi:10.1038/ncomms4831

    Article  CAS  PubMed  Google Scholar 

  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012

    Article  CAS  Google Scholar 

  • Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol (NY) 1:239–251

    Article  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek VV (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, Robl I, Sumper M, Kroger N (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 35:113–120

    Article  CAS  Google Scholar 

  • Hasle GR, Syvertsen EE (1997) Marine Diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, San Diego, CA, pp 5–385

    Chapter  Google Scholar 

  • Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1777:351–361

    Article  CAS  PubMed  Google Scholar 

  • Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A (2003) A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278:34167–34171

    Article  CAS  PubMed  Google Scholar 

  • Levitan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32:117–124

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2009) Research note: high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycol Res 57:142–146

    Article  CAS  Google Scholar 

  • Miyagawa-Yamaguchi A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2011) Stable nuclear transformation of the diatom Chaetoceros sp. Phycol. Res. 59:113–119

    Article  CAS  Google Scholar 

  • Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K (2013) Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem 77:874–876

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Moriguchi A, Tomo T, Niikura A, Nakajima S, Suzuki T, Okumura A, Iwai M, Shen JR, Ikeuchi M, Enami I (2010) Binding and functional properties of five extrinsic proteins in oxygen-evolving photosystem II from a marine centric diatom, Chaetoceros gracilis. J Biol Chem 285:29191–29199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagao R, Yokono M, Teshigahara A, Akimoto S, Tomo T (2014) Light-harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the Diatom Chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy. J Phys Chem B 118:5093–5100

    Article  CAS  PubMed  Google Scholar 

  • Nelson DM, Tréguer PM, Brzezinski A, Leynaert A, Quéguiner B (1995) Production and dissolution of biogenic silica an the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycle 9:359–372

    Article  CAS  Google Scholar 

  • Niu YF, Yang ZK, Zhang MH, Zhu CC, Yang WD, Liu JS, Li HY (2012) Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. Biotechniques. doi:10.2144/000113881

    Google Scholar 

  • Poulsen N, Kröger N (2005) A new molecular tool for transgenic diatoms. FEBS J. 272:3413–3423

    Article  CAS  PubMed  Google Scholar 

  • Poulsen N, Chesley PM, Kroger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42:1059–1065

    Article  Google Scholar 

  • Prihoda J, Tanaka A, de Paula WB, Allen JF, Tirichine L, Bowler C (2012) Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot 63:1543–1557

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra TV, Mahapatra DM, K B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48:8769–8788

    Article  CAS  Google Scholar 

  • Reid BG, Flynn GC (1997) Chromophore formation in green fluorescent protein. Biochemistry 36:6786–6791

  • Rushforth SR, Johansen JR (1986) The inland Chaetoceros (Bacillariophyceae) species of North America. J Phycol 22:441–448

    Article  Google Scholar 

  • Scheffel A, Poulsen N, Shian S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci USA 108:3175–3180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Cai J, Jiang Y, Jiang X, Zhang D (2013) Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 97:453–460

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115:691–694

    Article  CAS  PubMed  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

  • Zhang C, Hu H (2013) High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar Genomics 16:63–66

Download references

Acknowledgments

We thank Dr. N. Poulsen and Dr. N. Kröger at the Technical University of Dresden, Germany, for the gift of the vectors pTpNR-GFP/fcpNat, and Dr. J. Hotta, Yamagata Univ. for his help in microscopic analysis of the diatoms. We also appreciate the excellent technical assistance of Ms. N. Inui. This work was supported by the Japan Science and Technology Agency, Advanced Low Carbon Technology Research and Development Program (to K. I., Y. Y., and Y. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Ifuku.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ifuku, K., Yan, D., Miyahara, M. et al. A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis . Photosynth Res 123, 203–211 (2015). https://doi.org/10.1007/s11120-014-0048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0048-y

Keywords

Navigation