Photosynthesis Research

, Volume 122, Issue 3, pp 293–304 | Cite as

Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica

  • Kristina E. Overkamp
  • Sina Langklotz
  • Marco Aras
  • Stefan Helling
  • Katrin Marcus
  • Julia E. Bandow
  • Kerstin Hoef-Emden
  • Nicole Frankenberg-Dinkel
Regular Paper


The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αβ)(α′β) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the β-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position β-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position β-Cys-50 and β-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the β-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.


Cryptophyte Cr-PC577 Hemiselmis pacifica Dihydrobiliverdin Mesobiliverdin Phycobiliprotein Phycocyanin Phycocyanobilin 



Ammonium sulfate


Basic Local Alignment Search Tool


Provasoli-Guillard Culture Collection for the Culture of Marine Phytoplankton (now NCMA, National Center for Marine Algae and Microbiota East Boothbay Maine, USA)






Electrospray ionization


Ferredoxin-dependent bilin reductase


High performance liquid chromatography




2-(N-morpholino)ethanesulfonic acid


Mass spectrometry








Sodium dodecylsulfate polyacrylamide gel electrophoresis


Trifluoroacetic acid



KEO was supported by a PhD scholarship from the Studienstiftung des Deutschen Volkes e.V. whose support is kindly acknowledged. JEB acknowledges financial support for the Synapt G2-S mass spectrometer by the state of North Rhine Westphalia (Forschungsgroßgeräte der Länder) and NFD was supported by the German Research Foundation (DFG). KHE wishes to thank Prof. Michael Melkonian for access to lab and culturing facilities. We would like to thank Dr. Dirk Heinz and colleagues, Helmholtz Centre for Infection Research, Braunschweig, Germany for their help with N-terminal sequencing. Thanks are also due to Dr. Jessica Jordan for initial help with the project.


  1. Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248(1):79–96PubMedCrossRefGoogle Scholar
  2. Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18(11):577–584PubMedCrossRefGoogle Scholar
  3. Beale SI, Cornejo J (1991a) Biosynthesis of phycobilins. 3(Z)-Phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IXα. J Biol Chem 266:22333–22340PubMedGoogle Scholar
  4. Beale SI, Cornejo J (1991b) Biosynthesis of phycobilins. 15,16-Dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J Biol Chem 266:22341–22345PubMedGoogle Scholar
  5. Berkelman TR, Lagarias JC (1986) Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem 156(1):194–201PubMedCrossRefGoogle Scholar
  6. Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26(1):50–60PubMedCrossRefGoogle Scholar
  7. Broughton MJ, Howe CJ, Hiller RG (2006) Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas. Gene 369:72–79PubMedCrossRefGoogle Scholar
  8. Collini E, Wong CY, Wilk KE, Curmi PM, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281):644–647PubMedCrossRefGoogle Scholar
  9. Crespi HL, Smith UH (1970) The chromophore-protein bonds in phycocyanin. Phytochem 9(1):205–212CrossRefGoogle Scholar
  10. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65PubMedCrossRefGoogle Scholar
  11. Dammeyer T, Frankenberg-Dinkel N (2006) Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem 281(37):27081–27089PubMedCrossRefGoogle Scholar
  12. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410(6832):1091–1096PubMedCrossRefGoogle Scholar
  13. Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1(1):80–91PubMedCrossRefGoogle Scholar
  14. Frankenberg N, Lagarias JC (2003) Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic characterization. J Biol Chem 278(11):9219–9226PubMedCrossRefGoogle Scholar
  15. Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13(4):965–978PubMedCentralPubMedCrossRefGoogle Scholar
  16. Glazer AN, Wedemayer GJ (1995) Cryptomonad biliproteins—An evolutionary perspective. Photosynth Res 46(1–2):93–105PubMedCrossRefGoogle Scholar
  17. Guard-Friar D, MacColl R (1986) Subunit separation (alpha, alpha’, beta) of cryptomonad biliproteins. Photochem Photobiol 43(1):81–85PubMedCrossRefGoogle Scholar
  18. Hoef-Emden K (2008) Molecular phylogeny of phycocyanin-containing cryptophytes: evolution of biliproteins and geographical distribution. J Phycol 44(4):985–993CrossRefGoogle Scholar
  19. Ingram K, Hiller RG (1983) Isolation and characterization of a major chlorophyll ac2 light-harvesting protein from a Chroomonas species (Cryptophyceae). Biochimica et Biophysica Acta (BBA)-Bioenergetics 722(2):310–319CrossRefGoogle Scholar
  20. Jenkins J, Hiller RG, Speirs J, Godovac-Zimmermann J (1990) A genomic clone encoding a cryptophyte phycoerythrin alpha-subunit. Evidence for three alpha-subunits and an N-terminal membrane transit sequence. FEBS Lett 273(1–2):191–194PubMedCrossRefGoogle Scholar
  21. Lamparter T, Esteban B, Hughes J (2001) Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure. Eur J Biochem 268(17):4720–4730PubMedCrossRefGoogle Scholar
  22. Lane CE, Archibald JM (2008) New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae)1. J Phycol 44(2):439–450CrossRefGoogle Scholar
  23. Marin A, Doust AB, Scholes GD, Wilk KE, Curmi PM, van Stokkum IH, van Grondelle R (2011) Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. Biophys J 101(4):1004–1013PubMedCentralPubMedCrossRefGoogle Scholar
  24. Provasoli L, McLaughlin JJ, Droop MR (1957) The development of artificial media for marine algae. Arch Microbiol 25(4):392–428Google Scholar
  25. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379PubMedCrossRefGoogle Scholar
  26. Sidler W, Nutt H, Kumpf B, Frank G, Suter F, Brenzel A, Wehrmeyer W, Zuber H (1990) The complete amino-acid sequence and the phylogenetic origin of phycocyanin-645 from the cryptophytan alga Chroomonas sp. Biol Chem Hoppe Seyler 371(7):537–547PubMedCrossRefGoogle Scholar
  27. Spear-Bernstein L, Miller KR (1989) Unique location of the phycobiliprotein light-harvesting pigment in the Cryptophyceae. J Phycol 25(3):412–419CrossRefGoogle Scholar
  28. Terry MJ, Maines MD, Lagarias JC (1993) Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 268(35):26099–26106PubMedGoogle Scholar
  29. van der Weij-De Wit CD, Doust AB, van Stokkum IHM, Dekker JP, Wilk KE, Curmi PMG, van Grondelle R (2008) Phycocyanin Sensitizes both Photosystem I and Photosystem II in Cryptophyte Chroomonas CCMP270 Cells. Biophys J 94(6):2423–2433PubMedCentralPubMedCrossRefGoogle Scholar
  30. Wedemayer GJ, Kidd DG, Wemmer DE, Glazer AN (1992) Phycobilins of cryptophycean algae. Occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem 267(11):7315–7331PubMedGoogle Scholar
  31. Wedemayer G, Kidd D, Glazer A (1996) Cryptomonad biliproteins: bilin types and locations. Photosynth Res 48(1–2):163–170PubMedCrossRefGoogle Scholar
  32. Wemmer DE, Wedemayer GJ, Glazer AN (1993) Phycobilins of cryptophycean algae. Novel linkage of dihydrobiliverdin in a phycoerythrin 555 and a phycocyanin 645. J Biol Chem 268(3):1658–1669PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kristina E. Overkamp
    • 1
  • Sina Langklotz
    • 2
  • Marco Aras
    • 1
  • Stefan Helling
    • 3
  • Katrin Marcus
    • 3
  • Julia E. Bandow
    • 2
  • Kerstin Hoef-Emden
    • 4
  • Nicole Frankenberg-Dinkel
    • 1
  1. 1.Physiology of Microorganisms, Faculty for Biology and BiotechnologyRuhr University BochumBochumGermany
  2. 2.Applied Microbiology, Faculty for Biology and BiotechnologyRuhr UniversityBochumGermany
  3. 3.Medizinisches Proteom-Center, Department of Functional Proteomics, Faculty of MedicineRuhr University BochumBochumGermany
  4. 4.Botanical Institute, Cologne BiocenterUniversity of CologneCologneGermany

Personalised recommendations