Photosynthesis Research

, Volume 122, Issue 3, pp 261–273 | Cite as

Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells

Regular Paper

Abstract

The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in membrane structure were induced by three methods: synchronization of cell growth, adjustment of different growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0–4 h) induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to LH2/LH1 ~2.5), significantly increased rate (~7·104 s−1) and yield (Fv/Fmax ~0.7) of photochemistry and modest (~2.5-fold) decrease of the rate of electron transfer (~1.5·104 s−1). The results are discussed in frame of a model of sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox agents on the other hand.

Keywords

Purple photosynthetic bacteria Intracytoplasmic membrane development Oxygen control Reaction center Light-induced electron transfer 

Abbreviations

BChl

Bacteriochlorophyll

CM

Cytoplasmic membrane

cyt bc1

Cytochrome c2 oxidoreductase

cyt c22+

Reduced cytochrome c2

ICM

Intracytoplasmic membrane

LH1 and LH2

Core and peripheral light harvesting complexes, respectively

P

Bacteriochlorophyll dimer

QA

Primary acceptor (ubiquinone)

Rba

Rhodobacter

RC

Reaction center

References

  1. Aagaard J, Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15:209–225PubMedCrossRefGoogle Scholar
  2. Asztalos E, Maróti P (2009) Export or recombination of charges in reaction centers in intact cells of photosynthetic bacteria. Biochim Biophys Acta 1787:1444–1450PubMedCrossRefGoogle Scholar
  3. Asztalos E, Kis M, Maróti P (2010a) Aging photosynthetic bacteria monitored by absorption and fluorescence changes. Acta Biol Szeged 54(2):149–154Google Scholar
  4. Asztalos E, Italiano F, Milano F, Maróti P, Trotta M (2010b) Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria. Photochem Photobiol Sci 9:1218–1223PubMedCrossRefGoogle Scholar
  5. Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062PubMedCrossRefGoogle Scholar
  6. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468PubMedGoogle Scholar
  7. Bauer CE, Setterdahl A, Wu J, Robinson BR (2009) Regulation of gene expression in response to oxygen tension. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 707–725Google Scholar
  8. Bina D, Litvin R, Vácha F (2010) Absorbance changes accompanying the fast fluorescence induction in the purple bacterium Rhodobacter sphaeroides. Photosynth Res 105:115–121PubMedCrossRefGoogle Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  10. Cain BD, Deal CD, Fraley RT, Kaplan S (1981) In vivo intermembrane transfer of phospholipids in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J Bacteriol 145(3):1154–1166PubMedCentralPubMedGoogle Scholar
  11. Callister SJ, Nicora CD, Zeng X, Roh JH, Dominguez MA, Tavano CL, Monroe ME, Kaplan S, Donohue JT, Smith RD, Lipton MS (2006) Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J Microbiol Methods 67(3):424–436PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cartron ML, Olsen JD, Sener M, Jackson PJ, Brindley AA, Qian P, Dickman MJ, Leggett GJ, Schulten K, Hunter CN (2014) Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochim Biophys Acta. doi:10.1016/j.bbabio.2014.02.003 PubMedCentralPubMedGoogle Scholar
  13. Clayton RK (1966) Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem Photobiol 5:669–688CrossRefGoogle Scholar
  14. Clayton RK, Clayton BJ (1981) B850 pigment–protein complex of Rhodopseudomonas sphaeroides: extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll. Proc Natl Acad Sci USA 78(9):5583–5587PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cline K (2003) Biogenesis of green plant thylakoid membranes. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis (advances in photosynthesis and respiration), vol 13. Kluwer Academic Publishers, Dordrecht, pp 353–372CrossRefGoogle Scholar
  16. Comayras F, Jungas C, Lavergne J (2005) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides: I. Quinone domains and excitation energy transfer in chromatophores and reaction center antenna complexes. J Biol Chem 280:11203–11213PubMedCrossRefGoogle Scholar
  17. Crofts AR, Guergova-Kuras M, Hong S (1998) Chromatophore heterogeneity explains phenomena seen in Rhodobacter sphaeroides previously attributed to supercomplexes. Photosynth Res 55:357–362CrossRefGoogle Scholar
  18. Cutler RG, Evans JE (1966) Synchronization of bacteria by a stationary-phase method. J Bacteriol 91(2):469–476PubMedCentralPubMedGoogle Scholar
  19. Fedotova J, Zeilstra-Ryalls J (2014) Analysis of the role of PrrA, PpsR, and FnrL in intracytoplasmic membrane differentiation of Rhodobacter sphaeroides 2.4.1 using transmission electron microscopy. Photosynth Res 119:283–290PubMedCentralPubMedCrossRefGoogle Scholar
  20. Feniouk BA, Junge W (2009) Proton translocation and ATP synthesis by the F0F1–ATPase of Purple bacteria. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 475–493Google Scholar
  21. Fraley RT, Yen GSL, Lueking DL, Kaplan S (1979) The physical state of the intracytoplasmic membrane of Rhodopseudomonas sphaeroides and its relationship to the cell division cycle. J Biol Chem 254(6):1987–1991PubMedGoogle Scholar
  22. Gomelsky M, Zeilstra-Ryalls JH (2013) The living genome of a purple nonsulfur photosynthetic bacterium: overview of the Rhodobacter sphaeroides transcriptome landscapes. In: Beatty JT (ed) Genome evolution of photosynthetic bacteria, vol 66, 1st edn. Academic Press, San DiegoGoogle Scholar
  23. Joliot P, Vermeglio A, Joliot A (1989) Evidence for supercomplex between reaction centers, cytochrome c2 and cytochrome bc1 complex in Rhodobacter sphaeroides whole cells. Biochim Biophys Acta 975:336–345CrossRefGoogle Scholar
  24. Kiley PJ, Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52(1):50–69PubMedCentralPubMedGoogle Scholar
  25. Knacker T, Harwood JL, Hunter CN, Russell NJ (1985) Lipid biosynthesis in synchronized cultures of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochem J 229:701–710PubMedCentralPubMedGoogle Scholar
  26. Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231PubMedCrossRefGoogle Scholar
  27. Kocsis P, Asztalos E, Gingl Z, Maróti P (2010) Kinetic bacteriochlorophyll fluorometer. Photosynth Res 105:73–82PubMedCrossRefGoogle Scholar
  28. Lavergne J, Vermeglio A, Joliot P (2009) Coupling between RC and cytochrome bc1 complex. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 509–536Google Scholar
  29. Lueking DR, Fraley RT, Kaplan S (1978) Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253(451–457):17Google Scholar
  30. Lueking DR, Campbell TB, Burghardt RC (1981) Light- induced division and genomic synchrony in phototrophically growning cultures of Rhodopseudomonas sphaeroides. J Bacteriol 146(2):790–797PubMedCentralPubMedGoogle Scholar
  31. Maróti P, Asztalos E (2012) Calculation of connectivity of photosynthetic units in intact cells of Rhodobacter sphaeroides. In: Lu C (ed) Research for food, fuel and future—15th international conference on photosynthesis, pp 27–31Google Scholar
  32. Maróti P, Trotta M (2012) Artificial photosynthetic systems. In: Griesbeck A, Oelgemöller M, Ghetti F (eds) CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, pp 1289–1324Google Scholar
  33. Maróti P, Wraight CA (1988) Flash-induced H+ binding by bacterial photosynthetic reaction centers: comparison of spectrometric and conductometric methods. Biochim Biophys Acta 934:314–328CrossRefGoogle Scholar
  34. Maróti P, Asztalos E, Sipka G (2013) Fluorescence assay for photosynthetic capacity of bacteria. Biophys J 104(2):545aCrossRefGoogle Scholar
  35. Marquardt DW (1963) An algorithm for least-squares of estimation of nonlinear parameter. J Soc Ind Appl Math 11:431–441CrossRefGoogle Scholar
  36. Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antipresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–623PubMedCrossRefGoogle Scholar
  37. Megiatto JD, Méndez-Hernández DD, Tejeda-Ferrari ME, Teillout AL, Llansola-Portolés MJ, Kodis G, Poluektov OG, Rajh T, Mujica V, Groy TL, Gust D, Moore TA, Moore AL (2014) A bioinspired redox relay that mimics radical interactions of the Tyr-His pairs of photosystem II. Nat Chem. doi:10.1038/nchem.1862 PubMedGoogle Scholar
  38. Mozharov AD, Shchipakin VN, Fishov IL, Evtodienko YV (1985) Changes in the composition of membrane phospholipids during the cell-cycle of Escherichia coli. FEBS Lett 186:103–106PubMedCrossRefGoogle Scholar
  39. Murata N, Fork DC (1975) Temperature dependence of chlorophyll a fluorescence in relation to the physical phase of membrane lipids in algae and higher plants. Plant Physiol 56:791–796PubMedCentralPubMedCrossRefGoogle Scholar
  40. Niederman RA (2006) Structure, function and formation of bacterial intracytoplasmic membranes. In: Shively JM (ed) Complex intracellular structures in prokaryotes, microbiology monographs, vol 2. Springer, Berlin, pp 193–227CrossRefGoogle Scholar
  41. Niederman R (2013) Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. Photosynth Res 116:333–348PubMedCrossRefGoogle Scholar
  42. Oh JI, Kaplan S (2000) Redox signaling: globalization of gene expression. EMBO J 19:4237–4247PubMedCentralPubMedCrossRefGoogle Scholar
  43. Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRefGoogle Scholar
  44. Qian P, Bullough PA, Hunter CN (2008) Three-dimensional reconstruction of a membrane-bending complex: the RC–LH1–PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 283:14002–14011PubMedCrossRefGoogle Scholar
  45. Rivoyre M, Ginet N, Bouyer P, Lavergne J (2010) Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. Biochim Biophys Acta 1797:1780–1794PubMedCrossRefGoogle Scholar
  46. Scheuring S (2009) The supramolecular assembly of the photosynthetic apparatus of purple bacteria investigated by high-resolution atomic force microscopy. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 941–952Google Scholar
  47. Sener MK, Schulten K (2009) From atomic-level structure to supramolecular organization in the photosynthetic unit of purple bacteria. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 275–294Google Scholar
  48. Sener MK, Olsen JD, Hunter CN, Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA 104:15723–15728PubMedCentralPubMedCrossRefGoogle Scholar
  49. Siström WR (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J Gen Microbiol 28:607–616PubMedCrossRefGoogle Scholar
  50. Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61PubMedCrossRefGoogle Scholar
  51. Sturgis JN, Niederman RA (2009) Organization and assembly of light-harvesting complexes in the purple bacterial membrane. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria. Springer, Dordrecht, pp 253–273Google Scholar
  52. Takemoto J, Lascelles J (1973) Coupling between bacteriochlorophyll and membrane protein synthesis in Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 70:799–803PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tucker JD, Siebert CA, Escalante M, Adams PG, Olsen JD, Otto C, Stokes DJ, Hunter CN (2010) Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Mol Microbiol 76:833–847PubMedCrossRefGoogle Scholar
  54. Vermeglio A, Joliot P (2014) Modulation of the redox state of quinines by light in Rhodobacter sphaeroides under anaerobic conditions. Photosynth Res 120:237–246PubMedCrossRefGoogle Scholar
  55. Woronowicz K, Sha D, Frese RN, Niederman RA (2011) The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. Biochemistry 50(22):4819–4829PubMedCrossRefGoogle Scholar
  56. Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA (2012) The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol–cytochrome c2 oxidoreductase. Photosynth Res 111(1–2):125–138PubMedCrossRefGoogle Scholar
  57. Woronowicz K, Harrold JW, Kay JM, Niederman RA (2013) Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides. J Mol Microbiol Biotechnol 23:48–62PubMedCrossRefGoogle Scholar
  58. Wraight CA (2006) Chance and design—proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta 1757:886–912PubMedCrossRefGoogle Scholar
  59. Wraight CA, Lueking DR, Fraley RT, Kaplan S (1978) Synthesis of photopigments and electron transfer components in synchronous Phototropic cultures of Rhodopseudomonas sphaeroides. J Biol Chem 253(2):465–471PubMedGoogle Scholar
  60. Young CS, Beatty JT (2003) Multi-level regulation of purple bacterial light-harvesting complexes. In: Green BR, Parson WW (eds) Light harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 449–470CrossRefGoogle Scholar
  61. Zeng F, Roh JH, Callister SJ, Tavano CL, Donohue TJ, Lipton MS, Kaplan S (2007) Proteomic characterization of the Rhodobacter sphaeroides 2.4.1 photosynthetic membrane: identification of new proteins. J Bacteriol 189(20):7464–7474PubMedCentralPubMedCrossRefGoogle Scholar
  62. Zwietering MH, Rombouts FM, van’t Riet K (1992) Comparison of definitions of the lag phase and the exponential phase in bacterial growth. J Appl Bacteriol 72(139–145):20Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Medical PhysicsUniversity of SzegedSzegedHungary

Personalised recommendations