Skip to main content
Log in

Mechanisms of inorganic carbon acquisition in two estuarine Rhodophyceans: Bostrychia scorpioides (Hudson) ex Kützing Montagne and Catenella caespitosa (Withering) L. M. Irvine

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Marine macroalgae possess a range of mechanisms to increase the availability of CO2 for fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase. Of these, possession of a periplasmic or external carbonic anhydrase and the ability to use bicarbonate ions is widely distributed. The mechanisms of carbon acquisition were studied in two estuarine red macroalgae Bostrychia scorpioides and Catenella caespitosa using a range of techniques. pH-drift and CO2-depletion experiments at constant pH suggested that CO2 is the main source of inorganic carbon in both species. Inhibitors indicated that internal and external carbonic anhydrase were present in both species. Inhibitors also suggested that uptake of bicarbonate is unlikely to be present (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

eCA:

External carbonic anhydrase

DBS:

Dextran-bound sulfonamide

AZ:

Acetazolamide

iCA:

Internal carbonic anhydrase

EZ:

Ethoxyzolamide

VAN:

Sodium orthovanadate

MON:

Monensin

DIDS:

4-4′-Diisothiocyanatostibilene-2,2′-disulfonate

Ci:

Inorganic carbon

NSW:

Natural seawater

PAR:

Photosynthetically active radiation

FW:

Fresh weight

NPR:

Net photosynthetic rate

IRGA:

Infra-red gas analyzer

MOPS:

4-Morpholinepropanesulfonic acid

BTP:

Bis–tris propane

PQ:

Photosynthetic quotient

References

  • Andría JR, Pérez-Lloréns JL, Vergara JJ (1999) Mechanisms of inorganic carbon acquisition in Gracilaria gaditana nom. prov. (Rhodophyta). Planta 208:564–573

    Article  Google Scholar 

  • Axelsson L (1988) Changes in pH as a measure of photosynthesis by marine macroalgae. Mar Biol 97:287–294

    Article  Google Scholar 

  • Axelsson L, Uusitalo J (1988) Carbon acquisition strategies for marine macroalgae. I. Utilization of proton exchanges visualized during photosynthesis in a closed system. Mar Biol 97:295–300

    Article  CAS  Google Scholar 

  • Axelsson L, Uusitalo J, Ryberg H (1991) Mechanisms for concentrating and storage of inorganic carbon in marine macroalgae. In: García-Reina G and Pedersén M (eds) Seaweed cellular biotechnology, physiology and intensive cultivation. COST-48, Universidad de Las Palmas de Gran Canaria, Spain, pp 185–198

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Beer S (1994) Mechanisms of inorganic carbon acquisition in marine macroalgae (with special reference to the Chlorophyta). Prog Phycol Res 10:179–207

    CAS  Google Scholar 

  • Choo K, Snoeijs P, Pedersén M (2002) Uptake of inorganic carbon by Cladophora glomerata (Chlorophyta) from the Baltic Sea. J Phycol 38:493–502

    Article  CAS  Google Scholar 

  • Cook CM, Lanaras T, Colman B (1986) Evidence of bicarbonate transport in species of red and brown macrophytic marine algae. J Exp Bot 37:977–984

    Article  CAS  Google Scholar 

  • Demming-Adams B, Adams WW (1992) Carotenoids composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15:411–419

    Article  Google Scholar 

  • Denny MW (1993) Air and water. The biology and physics of life’s media. Princeton University Press, Princeton

    Google Scholar 

  • Drechsler Z, Sharkia R, Cabantchik ZI, Beer S (1993) Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 191:34–40

    Article  CAS  Google Scholar 

  • Falke JJ, Chan SI (1986) Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. Biochemistry 25:7888–7894

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Flores-Moya A, Fernández JA (1998) The role of external carbonic anhydrase in the photosynthetic use of inorganic carbon in the deep-water alga Phyllariopsis purpurascens (Laminariales, Phaeophyta). Planta 207:115–119

    Article  CAS  Google Scholar 

  • Gehl KA, Colan B, Sposato LM (1990) Mechanism of inorganic carbon uptake in Chlorella saccharophila. The lack of involvement of carbonic anhydrase. J Exp Bot 41:1385–1391

    Article  CAS  Google Scholar 

  • Gilmour DJ, Kaaden R, Gimmler H (1985) Vanadate inhibition of ATPases of Dunaliella parva in vitro and in vivo. J Plant Physiol 118:111–126

    Article  CAS  Google Scholar 

  • Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81:534–539

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titration part II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Granbom M, Pedersén M (1999) Carbon acquisition strategies of the red alga Eucheuma denticulatum. Hydrobiologia 398(399):349–354

    Article  Google Scholar 

  • Haglund K, Björk M, Ramazanov Z, García-Reina G, Pedersén M (1992) Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281

    Article  CAS  PubMed  Google Scholar 

  • Hanelt D, Huppertz K, Nultsch W (1992) Photoinhibition of photosynthesis and its recovery in red algae. Bot Acta 105:278–284

    Article  Google Scholar 

  • Hanelt D, Huppertz K, Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar Ecol Prog Ser 97:31–37

    Article  Google Scholar 

  • Johnston AM, Raven JA (1986) The utilization of bicarbonate ions by the macroalga Ascophyllum nodosum (L.) Le Jolis. Plant Cell Environ 9:175–184

    CAS  Google Scholar 

  • Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae. Oecologia 92:317–326

    Article  Google Scholar 

  • Kaplan A, Schwarz R, Lieman-Hurwitz J, Reinhold L (1991) Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol 97:851–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlsson J, Ramazanov Z, Hiltonen T, Gardeström P, Samuelsson G (1994) Effect of vanadate on photosynthesis and the ATP/ADP ratio in low-CO2-adapted Chlamydomonas reinhardtii cells. Planta 192:46–51

    CAS  Google Scholar 

  • Klenell M, Snoeijs P, Pedersén M (2004) Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514:41–53

    Article  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Somersalo S (1989) Fluorescence as a tool in photosynthesis research: application in studies of photo-inhibition, cold acclimation and freezing stress. Philos Trans R Soc Lond 323:281–293

    Article  CAS  Google Scholar 

  • Larsson C, Axelsson L (1999) Bicarbonate uptake and utilization in marine macroalgae. Eur J Phycol 34:79–86

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1997) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Mercado JM, Niell FX (1999) Carbonic anhydrase activity and use of HCO3 in B. scorpioides (Ceramiales, Rhodophyceae). Eur J Phycol 34:13–19

    Article  Google Scholar 

  • Mercado JM, Niell FX (2000) Carbon dioxide uptake by Bostrychia scorpoides (Rhodophyceae) under emersed conditions. Eur J Phycol 34:45–51

    Article  Google Scholar 

  • Mercado JM, Gordillo FJL, Figueroa FL, Niell FX (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220

    Article  CAS  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase—a highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murru M, Sandgreen CD (2004) Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) form Puget Sound, Washington, USA. J Phycol 40:837–845

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a

  • Pressman BC (1976) Biological applications of ionophores. Annu Rev Biochem 45:501–530

    Article  CAS  PubMed  Google Scholar 

  • Pressman BC, Fahim M (1982) Pharmacology and toxicology of the monovalent carboxylic ionophores. Annu Rev Pharmacol Toxicol 22:465–490

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Sültemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins and recent advances. Can J Bot 76:973–1002

    CAS  Google Scholar 

  • Raven JA (1997) Putting the C in the phycology. Eur J Phycol 32:319–333

    Article  Google Scholar 

  • Riley JB, Chester R (1977) Introduction to marine chemistry. Academic Press, London

    Google Scholar 

  • Sánchez de Pedro R (2011) Causas de la zonación de las rodofíceas del estuario del río Palmones: Una explicación en términos de competencia por la luz y los nutrientes. Honors Thesis, University of Málaga

  • Sánchez de Pedro R, Niell FX, Carmona R (2013) Differential nutrient uptake by two segregated red algae in an estuarine intertidal zone. Phycologia 52(6):461–471

    Article  Google Scholar 

  • Smith RG, Bidwell RGS (1989) Mechanisms of photosynthetic carbon dioxide uptake by the red macroalga Chondrus crispus. Plant Physiol 89:93–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snoeijs P, Klenell M, Choo KS, Comhaire I, Ray S, Pedersén M (2002) Strategies for carbon acquisition in the red marine macroalga Coccotylus truncates from the Baltic Sea. Mar Biol 140:435–444

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. Wiley and Wiley-Interscience, New York

    Google Scholar 

  • Sültemeyer DF, Fock HP, Canvin DT (1990) Mass-spectrometric measurement of intracellular carbonic-anhydrase activity in high and low Ci cells of Chlamydomonas-studies using O18 exchange with C13/O18 labelled bicarbonate. Plant Physiol 94:1250–1257

    Article  PubMed Central  PubMed  Google Scholar 

  • Sültemeyer D, Schmidt R, Heinrich PF (1993) Carbonic anhydrase in higher plants and aquatic microorganisms. Physiol Plant 88:179–190

    Article  Google Scholar 

  • Sültemeyer D, Klughammer B, Badger MR, Price GD (1998) Fast induction of high affinity HCO3 transport in cyanobacteria. Plant Physiol 116:183–192

    Article  PubMed Central  Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78:97–105

    Article  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Williams TG, Turpin DH (1987a) Photosynthetic kinetics determine the outcome competition for dissolved inorganic carbon by fresh-water microalgae. Implications for acidified lakes. Oecologia 73:307–311

    Article  Google Scholar 

  • Williams TG, Turpin DH (1987b) The role of external carbonic anhydrase in inorganic carbon acquisition by Chlamydomonas reinhardtii at alkaline pH. Plant Physiol 83:92–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the Grant CICYT CTM 2008-04453/MAR from the Ministry of Science and Innovation of Spain and a grant from a contract between ENCE and the University of Málaga. This work is included in the framework of Campus de Excelencia Internacional del Mar (CEIMAR). The authors thank Raquel Sánchez de Pedro for helping in the collection of algae. We also want to thank the two reviewers of this paper and the Editor, Prof. Maberly for their constructive suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Ruiz-Nieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Nieto, M., Fernández, J.A., Niell, F.X. et al. Mechanisms of inorganic carbon acquisition in two estuarine Rhodophyceans: Bostrychia scorpioides (Hudson) ex Kützing Montagne and Catenella caespitosa (Withering) L. M. Irvine. Photosynth Res 121, 277–284 (2014). https://doi.org/10.1007/s11120-014-0003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0003-y

Keywords

Navigation