Skip to main content
Log in

LCIB in the Chlamydomonas CO2-concentrating mechanism

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The CO2-concentrating mechanism confers microalgae a versatile and efficient strategy for adapting to a wide range of environmental CO2 concentrations. LCIB, which has been demonstrated as a key player in the eukaryotic algal CO2-concentrating mechanism (CCM), is a novel protein in Chlamydomonas lacking any recognizable domain or motif, and its exact function in the CCM has not been clearly defined. The unique air-dier growth phenotype and photosynthetic characteristics in the LCIB mutants, and re-localization of LCIB between different subcellular locations in response to different levels of CO2, have indicated that the function of LCIB is closely associated with a distinct low CO2 acclimation state. Here, we review physiological and molecular evidence linking LCIB with inorganic carbon accumulation in the CCM and discuss the proposed function of LCIB in several inorganic carbon uptake/accumulation pathways. Several new molecular characteristics of LCIB also are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amoroso G, Sültemeyer D, Thyssen C, Fock HP (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116:193–201

    Article  CAS  PubMed Central  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  CAS  PubMed  Google Scholar 

  • Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I (2012) Activation of the carbon-concentrating mechanism by CO2 deprivation coincides with massive transcriptional and metabolic restructuring in Chlamydomonas reinhardtii. Plant Cell 24:1860–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duanmu D, Spalding MH (2011) Insertional suppressors of Chlamydomonas reinhardtii that restore growth of air-dier lcib mutants in low CO2. Photosynth Res 109:123–132

    Article  CAS  PubMed  Google Scholar 

  • Duanmu D, Wang Y, Spalding MH (2009a) Thylakoid lumen carbonic anhydrase (CAH3) mutation suppresses air-dier phenotype of LCIB mutant in Chlamydomonas reinhardtii. Plant Physiol 149:929–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009b) Knockdown of a limiting-CO2-inducible gene HLA3 decreases bicarbonate transport and photosynthetic Ci-affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106:5990–5995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH (2012) Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876–1893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Plant Physiol 114:237–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson DT, Franklin LA, Samuelsson G, Badger MR (2003) The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to Rubisco and not photosystem II function in vivo. Plant Physiol 132:2267–2275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Youn-II P, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 43:425–435

    Article  CAS  PubMed  Google Scholar 

  • Mariscal V, Moulin P, Orsel M, Miller AJ, Fernández E, Galván A (2006) Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist 157:421–433

    Article  CAS  PubMed  Google Scholar 

  • Markelova A, Sinetova M, Kupriyanova E, Pronina A (2009) Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii. Russian J Plant Physio 56:761–768

    Article  CAS  Google Scholar 

  • Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV (2004) Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 135:173–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra M, Mason CB, Xiao Y, Ynalvez RA, Lato SM, Moroney JV (2005) The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Can J Bot 83:780–795

    Article  CAS  Google Scholar 

  • Miura K et al (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a Carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6:1251–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnishi N, Mukherjeeb B, Tsujikawaa T, Yanasea M, Nakanoa H, Moroneyb J, Fukuzawaa H (2010) Expression of a low-CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 9:3105–3117

    Article  Google Scholar 

  • Pollock SV, Prout DL, Godfrey AC, Lemaire SD, Moroney JV (2004) The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Plant Mol Biol 91:505–513

    Google Scholar 

  • Price GD, Maeda SI, Omata T, Badger MR (2002) Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Funct Plant Biol 29:131–149

    Article  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Spalding MH (2009) The CO2 concentrating mechanism and carbon assimilation. In: Harris EH, Stern DB (eds) The Chlamydomonas sourcebook: organellar and metabolic processes, Vol 2, 2nd edn. Academic, Oxford, pp 257–301

  • Spalding MH, Spreitzer RJ, Ogren WL (1983a) Reduced inorganic carbon transport in a CO2-requiring mutant of Chlamydomonas reinhardtii. Plant Physiol 73:273–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spalding MH, Spreitzer RJ, Ogren WL (1983b) Carbonic anhydrase-deficient mutant of Chlamydomonas reinhardtii requires elevated carbon dioxide concentration for photoautotrophic growth. Plant Physiol 73:268–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spalding MH, Spreitzer RJ, Ogren WL (1983c) Genetic and physiological analysis of the CO2-concentrating system of Chlamydomonas reinhardtii. Planta 159:261–266

    Article  CAS  PubMed  Google Scholar 

  • Spalding MH, Van K, Wang Y, Nakamura Y (2002) Acclimation of Chlamydomonas to changing carbon availability. Funct Plant Biol 29:221–230

    Article  CAS  Google Scholar 

  • Sültemeyer DF, Klöck G, Kreuzberg K, Fock HP (1988) Photosynthesis and apparent affinity for dissolved inorganic carbon by cells and chloroplasts of Chlamydomonas reinhardtii grown at high and low CO2 concentrations. Planta 176:256–260

    Article  PubMed  Google Scholar 

  • Van K, Wang Y, Nakamura Y, Spalding MH (2001) Insertional mutants of Chlamydomonas reinhardtii that require elevated CO2 for survival. Plant Physiol 127:607–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vance P, Spalding MH (2005) Growth, photosynthesis and gene expression in Chlamydomonas over a range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can J Bot 83:796–809

    Article  CAS  Google Scholar 

  • Villarejo A, Rolland N, Martínez F, Sültemeyer DF (2001) A new chloroplast envelope carbonic anhydrase activity is induced during acclimation to low inorganic carbon concentrations in Chlamydomonas reinhardtii. Planta 213:286–295

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Spalding MH (2006) An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:10110–10115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Ogawa T, Pakrasi HB, Mi H (2008) Identification and localization of the CupB protein involved in constitutive CO2 uptake in the Cyanobacterium, Synechocystis sp. Strain PCC 6803. Plant Cell Physiol 49:994–997

    Article  PubMed  Google Scholar 

  • Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:340–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamano T, Tsujikawa T, Hatano K, Ozawa SI, Takahashi Y, Fukuzawa H (2010) Light and low-CO2 dependent LCIB/LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (DE-FG02-12ER16335) funded by the U.S. Department of Energy, Office of Science (to M.H.S. and Y.W.) and a grant (MCB-0952323) funded by the National Science Foundation, Directorate for Biological Sciences (to M.H.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Spalding, M.H. LCIB in the Chlamydomonas CO2-concentrating mechanism. Photosynth Res 121, 185–192 (2014). https://doi.org/10.1007/s11120-013-9956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9956-5

Keywords

Navigation