Skip to main content
Log in

Photosynthesis-related quantities for education and modeling

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

PS:

Photosystem

LHC:

Light-harvesting complex

OEC:

Oxygen evolving complex

cyt b 6 f :

Cytochrome b 6 f complex

PQ:

Plastoquinone

Pc:

Plastocyanin

Fd:

Ferredoxin

FNR:

Ferredoxin-NADP+ reductase

PPFD:

Photosynthetic photon flux density

References

  • Albertano P, DiSomma DD, Capucci E (1997) Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy. J Plankton Res 19:1405–1416

    Google Scholar 

  • Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354

    PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Tsuchiya T, Watanabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108:8054–8058

    PubMed  CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    PubMed  CAS  Google Scholar 

  • Allen JF (2002a) Photosynthesis of ATP—electrons, proton pumps, rotors, and poise. Cell 110:273–276

    PubMed  CAS  Google Scholar 

  • Allen JF (2002b) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73:139–148

    PubMed  CAS  Google Scholar 

  • Allen JF (2004) Cytochrome b 6 f: structure for signaling and vectorial metabolism. Trends Plant Sci 9:130–137

    PubMed  CAS  Google Scholar 

  • Allred DR, Staehelin LA (1985) Lateral distribution of the cytochrome b 6 /f and coupling factor ATP synthase complexes of chloroplast thylakoid membranes. Plant Physiol 78:199–202

    PubMed  CAS  Google Scholar 

  • Allred DR, Staehelin LA (1986) Spatial organization of the cytochrome b 6-f complex within chloroplast thylakoid membranes. Biochim Biophys Acta 849:94–103

    PubMed  CAS  Google Scholar 

  • Alric J, Pierre Y, Picot D, Lavergne J, Rappaport F (2005) Spectral and redox characterization of the heme c i of the cytochrome b 6 f complex. Proc Natl Acad Sci USA 102:15860–15865

    PubMed  CAS  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63

    PubMed  CAS  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    PubMed  CAS  Google Scholar 

  • Anderson JM (2012) Lateral heterogeneity of plant thylakoid protein complexes: early reminiscences. Philos Trans R Soc B 367:3384–3388

    CAS  Google Scholar 

  • Anderson JM, Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci USA 80:745–749

    PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, De Las Rivas J (2008) Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth Res 98:575–587

    PubMed  CAS  Google Scholar 

  • Andersson B, Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593(2):427–440

    PubMed  CAS  Google Scholar 

  • Andersson B, Barber J (1994) Composition, organization and dynamics of thylakoid membranes. In: Bittar EE, Barber J (eds) Molecular processes of photosynthesis, vol 10. Elsevier, The Netherlands, pp 1–53

    Google Scholar 

  • Antal TK, Volgusheva AA, Kukarskih GP, Bulychev AA, Krendeleva TE, Rubin AB (2006) Effects of sulfur limitation on the PS II functioning in Chlamydomonas reinhardtii as probed by the chlorophyll a fluorescence. Physiol Plant 128:360–367

    CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Pashchenko VZ, Rubin AB, Stensjo K, Tyystjärvi E, Carpentier R, Allakhverdiev SI (2012) Photosynthetic hydrogen production: mechanisms and approaches. In: Azbar N, Levin D (eds) State of the Art and progress in production of biohydrogen. Bentham Science, Bussum, pp 25–54

    Google Scholar 

  • Antal T, Kolacheva A, Maslakov A, Riznichenko G, Krendeleva T, Rubin A (2013) Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii. Photosynth Res 114:143–154

    PubMed  CAS  Google Scholar 

  • Aro EM (ed) (2012) Photosystem II, Special Issue. Biochim Biophys Acta 1817:1–266

  • Aro EM, Andersson B (eds) (2001) Regulation of photosynthesis. In: Govindjee (series ed), vol 11 of Advances in photosynthesis and respiration

  • Atkins PW (1998) Physical chemistry, 6th edn. Freeman, New York

    Google Scholar 

  • Austin JR, Staehelin LA (2011) Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol 155:1601–1611

    PubMed  CAS  Google Scholar 

  • Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b 6 f complex from Nostoc sp PCC 7120. J Biol Chem 284:9861–9869

    PubMed  CAS  Google Scholar 

  • Barber J, Iwata S (2005) Refined X-ray structure of photosystem II and its application. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Kluwer Academic Publishers, Dordrecht, pp 469–489

    Google Scholar 

  • Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GYu, Chemeris YuK, Renger G, Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119

    PubMed  CAS  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GYu, Rubin AB, Renger G (2011) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. BioSystems 103:188–195

    PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    PubMed  CAS  Google Scholar 

  • Berry S, Rumberg B (1999) Proton to electron stoichiometry in electron transport of spinach thylakoids. Biochim Biophys Acta 1410:248–261

    PubMed  CAS  Google Scholar 

  • Berry S, Rumberg B (2001) Kinetic modeling of the photosynthetic electron transport chain. Bioelectrochemistry 53:35–53

    PubMed  CAS  Google Scholar 

  • Bhattacharyya AK, Meyer TE, Tollin G (1986) Reduction kinetics of the ferredoxin–ferredoxin-NADP+ reductase complex: a laser flash photolysis study. Biochemistry 25:4655–4661

    CAS  Google Scholar 

  • Blackwell M, Gibas C, Gygax S, Roman D, Wagner B (1994) The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications. Biochim Biophys Acta 1183:533–543

    CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Boekema EJ, Boonstra AF, Dekker JP, Rögner M (1994) Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J Bioenerg Biomembr 26:17–29

    PubMed  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rögner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92:175–179

    PubMed  CAS  Google Scholar 

  • Böhme H (1978) Quantitative determination of ferredoxin, ferredoxin-NADP+ reductase and plastocyanin in spinach chloroplasts. Eur J Biochem 83:137–141

    PubMed  Google Scholar 

  • Bolton JR (1978) Solar energy conversion efficiency in photosynthesis or why two photosystems? In: Hall DO, Coombs J, Goodwin TW (eds) Congr photosynthesis, vol 78. The Biochemical Society, London, pp 621–634

    Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373

    CAS  Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507:100–114

    PubMed  CAS  Google Scholar 

  • Breyton C (2000) The cytochrome b 6 f complex: structural studies and comparison with the bc1 complex. Biochim Biophys Acta 1459:467–474

    PubMed  CAS  Google Scholar 

  • Brody S (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960. Photosynth Res 73:127–132

    PubMed  CAS  Google Scholar 

  • Bron P, Lacapere J-J, Breyton C, Mosser G (1999) The 9 Å projection structure of cytochrome b 6 f complex determined by electron crystallography. J Mol Biol 287:117–126

    PubMed  CAS  Google Scholar 

  • Byrt CS, Grof CPL, Furbank RT (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120–135

    PubMed  CAS  Google Scholar 

  • Caffari S, Kouřil R, Kereïche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Google Scholar 

  • Cammack R, Rao KK, Bargeron CP, Hutson KG, Andrew PW, Rogers LJ (1977) Midpoint redox potentials of plants and algal ferredoxins. Biochem J 168:205–209

    PubMed  CAS  Google Scholar 

  • Campbell DA, Tyystjärvi E (2012) Parametrization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265

    PubMed  CAS  Google Scholar 

  • Chow WS, Fan DY, Oguchi R, Jia H, Losciale P, Park YI, He J, Öquist G, Shen YG, Anderson JM (2012) Quantifying and monitoring functional photosystem II and the stoichiometry of the two photosystems in leaf segments: approaches and approximations. Photosynth Res 113:63–74

    PubMed  CAS  Google Scholar 

  • Christen G, Seeliger A, Renger G (1999) P +•680 reduction kinetics and transition probability of the water oxidizing complex as a function of pH and H/D isotope exchange in spinach thyalkoids. Biochemistry 38:6082–6092

    PubMed  CAS  Google Scholar 

  • Cox RP, Andersson B (1981) Lateral and transverse organization of cytochromes in the chloroplast thylakoid membrane. Biochem Biophys Res Commun 103:1336–1342

    PubMed  CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2004) Evolution in photosynthesis: time-independent structure of the cytochrome b 6 f complex. Biochemistry 43:5921–5929

    PubMed  CAS  Google Scholar 

  • Cramer WA, Yamashita E, Hasan SS, Baniulis D (2012) Cytochrome b 6 f complex. In: Roberts G (ed) Encyclopedia of biophysics, vol 1. Springer-Verlag, Berlin, pp 417–422

    Google Scholar 

  • Crane FL (2010) Discovery of plastoquinones: a personal perspective. Photosynth Res 103:195–209

    PubMed  CAS  Google Scholar 

  • Croce R, van Amerongen H (2011) Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane. J Photochem Photobiol B 104:142–153

    PubMed  CAS  Google Scholar 

  • Croce R, Morosinotto T, Bassi R (2006) LHCI: the antenna complex of Photosystem I in plants and green algae. In: Golbeck JH (ed) Photosystem I, the light-driven plastocyanin:ferredoxin oxidoreductase, Chapter 10, Series: Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dortecht, pp 119–137

    Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726:149–186

    CAS  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force in vitro and in vivo. Control of pmf parsing into Δψ and ΔpH by counterion fluxes. Biochemistry 40:1226–1237

    PubMed  CAS  Google Scholar 

  • Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:32

    PubMed  Google Scholar 

  • Dall’Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R (2007) The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19:1048–1064

    PubMed  Google Scholar 

  • Dall’Osto L, Holt NE, Kaligotla S, Fuciman M, Cazzaniga S, Carbonera D, Frank HA, Alric J, Bassi R (2012) Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. J Biol Chem 287:41820–41834

    PubMed  Google Scholar 

  • Danielsson R, Albertsson PA (2009) Fragmentation and separation analysis of the photosynthetic membrane from spinach. Biochim Biophys Acta 1787:25–36

    PubMed  CAS  Google Scholar 

  • Danielsson R, Suorsa M, Paakkarinen V, Albertsson P-Å, Styring S, Aro E-M, Mamedov F (2006) Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem 281:14241–14249

    PubMed  CAS  Google Scholar 

  • Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16:3–10

    PubMed  CAS  Google Scholar 

  • Daum B, Kühlbrandt W (2011) Electron tomography of plant thylakoid membranes. J Exp Bot 62:2393–2400

    PubMed  CAS  Google Scholar 

  • Daum B, Nicastro D, Il JA, McIntosh JR, Kühlbrandt W (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–1312

    PubMed  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    PubMed  CAS  Google Scholar 

  • Delosme R, Olive J, Wollman F-A (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158

    Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    CAS  Google Scholar 

  • Demmig-Adams B, Adams III WW, Mattoo AK (2006) Photoprotection, photoinhibition, gene regulation, and environment. In: Govindjee (ed.) Advances in Photosynthesis and Respiration Series, V. 2, Springer, Dordrecht, The Netherlands

  • Diner BA, Britt RD (2005) The redox active Tyrosines YZ and YD. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 207–233

  • Drepper F, Hippler M, Nitschke W, Haehnel W (1996) Binding dynamics and electron transfer between plastocyanin and photosystem I. Biochemistry 35:1282–1295

    PubMed  CAS  Google Scholar 

  • Driouich A, Jauneau A, Staehelin LA (1997) 7-Dehydrobrefeldin a, a naturally occurring brefeldin A derivative, inhibits secretion and causes a cis-to-trans breakdown of Golgi stacks in plant cells. Plant Physiol 113:487–492

    PubMed  CAS  Google Scholar 

  • Drop B, Webber-Birungi M, Fusetti F, Kouřil R, Redding KE, Boekema EJ, Croce R (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286:44878–44887

    PubMed  CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    PubMed  CAS  Google Scholar 

  • Eckert H-J, Geiken B, Bernarding J, Napiwotzki A, Eichler H-J, Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PS II membrane fragments from spinach. Photosynth Res 27:97–108

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis (2nd ed). Princeton University Press

  • Fan DY, Hope AB, Smith PJ, Jia H, Pace RJ, Anderson JM, Chow WS (2007) The stoichiometry of the two photosystems in higher plants revisited. Biochim Biophys Acta 1767:1064–1072

    PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    PubMed  CAS  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M (2002) Involvement of state transition in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    PubMed  CAS  Google Scholar 

  • Flindt R (2006) Amazing numbers in biology. Elsevier, Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Ford DN, Shibles R (1988) Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence. Plant Physiol 86:108–111

    PubMed  CAS  Google Scholar 

  • Foster JS, Havemann SA, Singh AK, Sherman LA (2009) Role of mrgA in peroxide and light stress in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 293:298–304

    PubMed  CAS  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    PubMed  CAS  Google Scholar 

  • Friend AD, Geider RJ, Behrenfeld MJ, Still CJ (2009) Photosynthesis in global-scale models. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico, Series: advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 465–497

  • Fromme P (1998) Crystallization of Photosystem I for structural analysis. Habilitation. Technical University Berlin, Berlin

    Google Scholar 

  • Fromme P, Allen JP (2007) X-ray crystallography of photosynthetic proteins. In: Matysik J, TJ Aartsma (eds) Biophysical techniques in photosynthesis, Series: advances in photosynthesis and respiration, Vol 26. Kluwer Academic Publishers, Dordrecht, pp 97–124

  • Fromme P, Grotjohann I (2006) Structural analysis of cyanobacterial Photosystem I. In: Golbeck JH (ed) Photosystem I, the light-driven plastocyanin:ferredoxin oxidoreductase, chapter 6, Series: Advances in photosynthesis and respiration. Kluwer Academic Publishers, pp 47–69

  • Fromme P, Schlodder E, Jansson S (2003) Structure and function of the antenna system in Photosystem I. In: Green B, Parson B (eds) Light harvesting antennas in photosynthesis. Series: Advances in photosynth research, Kluwer Academic Press, The Netherlands, pp 253–279

  • Fromme R, Grotjohann I, Fromme P (2008) Structure and function of Photosystem I. In: Renger G (ed) Primary processes of photosynthesis: basic principles and apparatus, part 2. Series: Comprehensive series in photochemical and photobiological sciences. RSC Publishing, Cambridge, pp 111–146

  • Golbeck JH (ed) (2005) Photosystem I. The light-driven plastocyanin:ferredoxin oxidoreductase. Springer, The Netherlands

  • Govindjee (1999) Carotenoids in photosynthesis: an historical perspective. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer Academic Publishers, pp 1–19

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 1–41

  • Graan T, Ort DR (1984) Quantification of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts. J Biol Chem 259:14003–14010

    PubMed  CAS  Google Scholar 

  • Grabolle M, Dau H (2005) Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708:209–218

    PubMed  CAS  Google Scholar 

  • Green BR, Gantt E (2005) Distal and extrinsic photosystem II antennas. In: Wydrzynski TJ, Satoh K (eds) Photosystem II. The Light-Driven Water: Plastoquinone Oxidoreductase. Springer, Dordrecht, pp 23–44

    Google Scholar 

  • Green BR, Parson WW (eds) (2003) Light-harvesting antennas in photosynthesis. Springer, The Netherlands

    Google Scholar 

  • Gross EL (1996) Plastocyanin: structure, location, diffusion, and electron transfer mechanisms. In: Ort D, Yocum C (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 413–429

    Google Scholar 

  • Grotjohann I, Fromme P (2005) Structure of cyanobacterial Photosystem I. Photosynth Res 85:51–72

    PubMed  CAS  Google Scholar 

  • Grundmeier A, Dau H (2012) Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta 1817:88–105

    PubMed  CAS  Google Scholar 

  • Gruszecki WI, Strzalka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    PubMed  CAS  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613

    PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger AW (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    PubMed  CAS  Google Scholar 

  • Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank J, Müh F, Saenger W, Zouni A (2010) Recent progress in the crystallographic studies of photosystem II. Chem Phys Chem 11:1160–1171

    PubMed  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    CAS  Google Scholar 

  • Haehnel W, Ratajczak R, Robenek H (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol 108:1397–1405

    PubMed  CAS  Google Scholar 

  • Hall DO, Cammack R, Rao KK (1973) The plant ferredoxins and their relationship to the evolution of ferredoxins from primitive life. Pure Appl Chem 34:553–578

    CAS  Google Scholar 

  • Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48:641–671

    PubMed  CAS  Google Scholar 

  • Hankamer B, Barber J, Nield J (2005) Structural analysis of the Photosystem II core/antenna holocomplex by electron microscopy. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Kluwer Academic Publishers, Dordrecht, pp 403–424

    Google Scholar 

  • Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36:1071–1084

    PubMed  CAS  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b 6 f complex. Proc Natl Acad Sci USA 110:4297–4302

    PubMed  CAS  Google Scholar 

  • Haslett BG, Cammack R, Whatley FR (1973) Quantitative studies on ferredoxin in greening bean leaves. Biochem J 136:697–703

    PubMed  CAS  Google Scholar 

  • Haumann M, Junge W (1994) The rates of proton uptake and electron transfer at the reducing side of photosystem II in thylakoids. FEBS Lett 347:45–50

    PubMed  CAS  Google Scholar 

  • Hauser M, Eichelmann H, Oja V, Heber U, Laisk A (1995) Stimulation by light of rapid pH regulation in the chloroplast stroma in vivo as indicated by CO2 solubilization in leaves. Plant Physiol 108:1059–1066

    PubMed  CAS  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767

    PubMed  CAS  Google Scholar 

  • Havaux M, Dall’osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    PubMed  CAS  Google Scholar 

  • Hillier W, Messinger J (2005) Mechanism of photosynthetic oxygen production. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Kluwer Academic Publishers, Dordrecht, pp 567–608

    Google Scholar 

  • Holzwarth AR, Müller MG, Niklas J, Lubitz W (2006) Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J 90:552–565

    PubMed  CAS  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    PubMed  CAS  Google Scholar 

  • Hope AB, Matthews DB, Valente P (1994) The kinetics of reactions around the cytochrome bf complex studied in an isolated system. Photosynth Res 40:199–206

    CAS  Google Scholar 

  • Hurley JK, Tollin G (2006) Electron transfer from ferredoxin and flavodoxin to ferredoxin: NADP+ reductase. In: Golbeck JH (ed) Photosystem I, the light-driven plastocyanin:ferredoxin oxidoreductase, chapter 27, series: advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 455–476

    Google Scholar 

  • Hurley JK, Hazzard JT, Martinez-Julvez M, Medina M, Gomez-Moreno C, Tollin G (1999) Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Protein Sci 8:1614–1622

    PubMed  CAS  Google Scholar 

  • Illerhaus J, Altschmied L, Reichert J, Zak E, Herrmann RG, Haehnel W (2000) Dynamic interaction of plastocyanin with the cytochrome bf complex. J Biol Chem 275:17590–17595

    PubMed  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    PubMed  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    PubMed  CAS  Google Scholar 

  • Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352

    PubMed  CAS  Google Scholar 

  • Johnson MP, Brain APR, Ruban AV (2011) Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation. Plant Signal Behav 6:1–5

    Google Scholar 

  • Joliot A, Joliot P (1964) Etude cinétique de la réaction photochimique libérant l’oxygène au cours de la photosynthèse. CR Acad Sci Paris 258:4622–4625

    CAS  Google Scholar 

  • Joliot P, Joliot A (2003) Excitation transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76:241–245

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Klukas O, Witt HT, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411:909–917

    PubMed  CAS  Google Scholar 

  • Kirchoff H, Borinski M, Lenhert S, Chi L, Büchel C (2004) Transversal and lateral exciton energy transfer in grana thylakoids of spinach. Biochemistry 43:14508–14516

    Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    PubMed  Google Scholar 

  • Kovalenko IB, Diakonova AN, Abaturova AM et al (2010) Direct computer simulation of ferredoxin and FNR complex formation in solution. Phys Biol 7:26001

    CAS  Google Scholar 

  • Kovalenko IB, Abaturova AM, Riznichenko GY, Rubin AB (2011) Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin. BioSystems 103:180–187

    PubMed  CAS  Google Scholar 

  • Kramer DM, Crofts AR (1993) The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol. Biochim Biophys Acta 1183:72–84

    CAS  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Kanazawa A, Cruz JA, Ivanov B, Edwards B (2004) The relationship between photosynthetic electron transfer and its regulation. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 251–278

    Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of the redox midpoint potential of the primary quinone acceptor, QA, in photosystem II. Biochim Biophys Acta 1229:193–201

    Google Scholar 

  • Laisk A, Nedbal L, Govindjee (eds) (2009) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. In: Govindjee (ed) Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    PubMed  CAS  Google Scholar 

  • Lamppa GK, Elliot LV, Bendich AJ (1980) Changes in chloroplast number during pea leaf development. Planta 148:437–443

    CAS  Google Scholar 

  • Latouche G, Cerovic ZG, Montagnini F, Moya I (2000) Light-induced changes of NADPH fluorescence in isolated chloroplasts: a spectral and fluorescence lifetime study. Biochim Biophys Acta 1460:311–329

    Google Scholar 

  • Latowski D, Schaller S, Olchawa-Pajor M, Goss R, Strzałka K (2011) Violaxanthin and diadinoxanthin cycles as an important photoprotective mechanism in photosynthesis. Rus J Plant Physiol V 58:952–964

    CAS  Google Scholar 

  • Lavergne J, Briantais J-M (1996) Photosystem II heterogeneity. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 265–287

  • Lavergne J, Trissl H-W (1995) Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492

    PubMed  CAS  Google Scholar 

  • Lawlor DW (1987) Photosynthesis: metabolism, control and physiology. Wiley, New York

    Google Scholar 

  • Lawlor DW (2001) Photosynthesis, 3rd edn. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Laxroix De, de Lavalette A, Barucq L, Alric J, Rappaport F, Zito F (2009) Is the redox state of the ci heme of the cytochrome b 6 f complex dependent on the occupation and structure of the Qi site and vice versa? J Biol Chem 284:20822–20829

    Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    PubMed  Google Scholar 

  • Lazár D (2009) Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis. Photosynthetica 47:483–498

    Google Scholar 

  • Lichtenthaler H, Babani F (2004) Light adaptation and scenescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 713–736

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    PubMed  CAS  Google Scholar 

  • Malnoë A, Wollman FA, Vitry C, Rappaport F (2011) Photosynthetic growth despite a broken Q-cycle. Nat Commun 2:301

    PubMed  Google Scholar 

  • Matsubara H, Sasaki RM, Chain RK (1968) Spinach ferredoxin. I. Amino acid composition and terminal sequences. J Biol Chem 243:1725–1731

    PubMed  CAS  Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:1–20

    Google Scholar 

  • McCarty RE, Evron Y, Johnson EA (2000) The chloroplast ATP synthase: a rotary enzyme? Annu Rev Plant Physiol 51:83–109

    CAS  Google Scholar 

  • Melis A (1996) Excitation energy transfer: functional and dynamic aspects of Lhc(cab) proteins. In: Ort DR, Yocum CF (eds), Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 523–538

  • Melis A, Brown J (1980) Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes. Proc Natl Acad Sci USA 77:4712–4716

    PubMed  CAS  Google Scholar 

  • Melis A, Harvey GW (1981) Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochim Biophys Acta 637:138–145

    CAS  Google Scholar 

  • Melis A, Homann P (1975) Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437

    CAS  Google Scholar 

  • Miller KR, Staehelin LA (1976) Analysis of thylakoid outer surface. Coupling factor is limited to unstacked membrane regions. J Cell Biol 68:30–47

    PubMed  CAS  Google Scholar 

  • Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753

    PubMed  CAS  Google Scholar 

  • Miloslavina Y, Szczepaniak M, Muller MG, Sander J, Nowaczyk M, Rögner M, Holzwarth AR (2006) Charge separation kinetics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry 45:2436–2442

    PubMed  CAS  Google Scholar 

  • Minagawa J (2011) State transitions: the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    PubMed  CAS  Google Scholar 

  • Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson S (2012) Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12:6

    PubMed  CAS  Google Scholar 

  • Mitchell R, Spillmann A, Haehnel W (1990) Plastoquinol diffusion in linear photosynthetic electron transport. Biophys J 58:1011–1024

    PubMed  CAS  Google Scholar 

  • Moal G, Lagoutte B (2012) Photo-induced electron transfer from photosystem I to NADP(+): characterization and tentative simulation of the in vivo environment. Biochim Biophys Acta 1817:1635–1645

    PubMed  CAS  Google Scholar 

  • Moser CC, Dutton PL (2006) Application of marcus theory to photosystem I electron transfer. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol 24. Springer, Dordrecht, pp 583–594

  • Mulo P (2011) Chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR): structure, function and location. Biochim Biophys Acta 1807:927–934

    PubMed  CAS  Google Scholar 

  • Murakami A, Fujita Y, Nemson JA, Melis A (1997) Chromatic Regulation in Chlamydomonas reinhardtii: time course of photosystem stoichiometry adjustment following a shift in growth light quality. Plant Cell Physiol 38:188–193

    CAS  Google Scholar 

  • Nakajima M, Sakamoto T, Wada K (2002) The complete purification and characterization of three forms of ferredoxin-NADP(+) oxidoreductase from a thermophilic cyanobacterium Synechococcus elongatus. Plant Cell Physiol 43:484–493

    PubMed  CAS  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    PubMed  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    PubMed  CAS  Google Scholar 

  • Niyogi K, Björkman O, Grossman A (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167

    PubMed  CAS  Google Scholar 

  • Nobel P (2005) Physicochemical and environmental plant physiology, 3rd edn. Elsevier Academic Press, The Netherlands

    Google Scholar 

  • Nobel P (2009) Physicochemical and environmental plant physiology, 4th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Nordling M, Sigfridsson K, Young S, Lundberg LG, Hansson O (1991) Flash-photolysis studies of the electron transfer from genetically modified spinach plastocyanin to photosystem I. FEBS Lett 291:327–330

    PubMed  CAS  Google Scholar 

  • Oja V, Laisk A (2012) Photosystem II antennae are not energetically connected: evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves. Photosynth Res 114:15–28

    PubMed  CAS  Google Scholar 

  • Oja V, Eichelmann H, Laisk A (2011) The size of the lumenal proton pool in leaves during induction and steady-state photosynthesis. Photosynth Res 110:73–88

    PubMed  CAS  Google Scholar 

  • Okayama S (1976) Redox potential of plastoquinone A in spinach chloroplasts. Biochim Biophys Acta 440:331–336

    PubMed  Google Scholar 

  • Ort DR, Yocum CF (eds) (1996) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Papageorgiou CG, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, The Netherlands

  • Park Y-I, Anderson JM, Chow WS (1996) Photoinactivation of functional photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta 198:300–309

    CAS  Google Scholar 

  • Paulsen H (1999) Carotenoids and the assembly of light-harvesting complexes. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The photochemistry of carotenoids. Advances in photosynthesis and respiration, vol 8. Springer, Dordrecht, pp 123–135

  • Peltier G, Tolleter D, Billon E, Cournac L (2010) Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res 106:19–31

    PubMed  CAS  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    PubMed  CAS  Google Scholar 

  • Petersen J, Förster K, Turina P, Gräber P (2012) Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. Proc Natl Acad Sci USA 109:11150–11155

    PubMed  CAS  Google Scholar 

  • Piechulla B, Heldt HW (2010) Plant biochemistry. Elsevier Academic Press, The Netherlands

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Pospíšil P (2011) Enzymatic function of cytochrome b 559 in photosystem II. J Photochem Photobiol 104:341–347

    Google Scholar 

  • Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of the Photosystem II reaction center: a photon echo study. J Phys Chem 104:11563–11578

    CAS  Google Scholar 

  • Pschorn R, Rühle W, Wild A (1988) Structure and function of ferredoxin-NADP+ oxidoreductase. Photosynth Res 17:217–229

    CAS  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley, New York

  • Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272

    CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527

    PubMed  CAS  Google Scholar 

  • Raven JA (1984) Energetics and transport in aquatic plants. In: Liss AR (ed) Series: MBL lectures in biology, vol 4. Wiley, New York

  • Raven PH, Johnson GB, Singer SR, Losos JB (2005a) Biology, 7th edn. McGraw Hill, Boston

    Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005b) Biology of plants, 7th edn. Freeman, New York

    Google Scholar 

  • Redinbo MR, Cascio D, Choukair MK, Rice D, Merchant S, Yeates TO (1993) The 1.5-Å crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii. Biochemistry 32:10560–10567

    PubMed  CAS  Google Scholar 

  • Redinbo MR, Yeates TO, Merchant S (1994) Plastocyanin: structural and functional analysis. J Bioenerg Biomembr 26:49–66

    PubMed  CAS  Google Scholar 

  • Renger G (2008) Primary processes of photosynthesis: principles and apparatus. In: Häder DP, Jori G (eds) Comprehensive series in photochemical and photobiological sciences, vol 9. RSC Publishing, Cambridge

    Google Scholar 

  • Renger G (2012) Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta 1817:1164–1176

    PubMed  CAS  Google Scholar 

  • Rich PR (1984) Electron and proton transfers through quinones and cytochrome bc complexes. Biochim Biophys Acta 768:53–79

    PubMed  CAS  Google Scholar 

  • Rochaix J-D (2011) Reprint of: regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:878–886

    PubMed  CAS  Google Scholar 

  • Roelofs TA, Lee CH, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetic from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II alpha- and beta-units. Biophys J 61:1147–1163

    PubMed  CAS  Google Scholar 

  • Roy S, Kulshrestha K, Prasad M (2009) Switching light with light in chlorophyll-a molecules based on excited-state absorption. IEEE Trans Nanobioscience 8:83–91

    PubMed  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q-cycle is continuously engaged. Proc Natl Acad Sci USA 97:14283–14288

    PubMed  CAS  Google Scholar 

  • Sanderson DG, Anderson LB, Gross EL (1986) Determination of the redox potential and diffusion coefficient of the protein plastocyanin using optically transparent filar electrodes. Biochim Biophys Acta 852:269–278

    PubMed  CAS  Google Scholar 

  • Santabarbara S, Galuppini L, Casazza AP (2010) Bidirectional electron transfer in the reaction centre of photosystem I. J Integr Plant Biol 52:735–749

    PubMed  CAS  Google Scholar 

  • Santabarbara S, Casazza AP, Ali K, Economou CK, Wannathong T, Zito F, Redding KE, Rappaport F, Purton S (2013) The requirement for carotenoids in the assembly and function of the photosynthetic complexes in Chlamydomonas reinhardtii. Plant Physiol 161(1):535–546

    PubMed  CAS  Google Scholar 

  • Scheer H (2003) Light-harvesting antennas in photosynthesis. In: Green BR, Parsons WW (eds) Series: advances in photosynthesis and respiration, vol 13. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schilstra MJ, Rappaport F, Nugent JHA, Barnett CJ, Klug DR (1998) Proton/hydrogen transfer affects the S-state-dependent microsecond phases of P680 + reduction during water splitting. Biochemistry 37:3974–3981

    PubMed  CAS  Google Scholar 

  • Schöttler MA, Kirchhoff H, Weis E (2004) The role of plastocyanin in the adjustment of the photosynthetic electron transport to the carbon metabolism in tobacco. Plant Physiol 136:4265–4274

    PubMed  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Muller DJ (2000) Structural biology: proton-powered turbine of a plant motor. Nature 405:418–419

    PubMed  CAS  Google Scholar 

  • Setif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507:161–179

    PubMed  CAS  Google Scholar 

  • Setif P (2006) Electron transfer from the bound iron-sulfur clusters to ferredoxin/flavodoxin: kinetic and structural properties of ferredoxin/flavodoxin reduction by photosystem I. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Springer, pp. 439–454

  • Shi LX, Hall M, Funk C, Schröder WP (2012) Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim Biophys Acta 1817:13–25

    PubMed  CAS  Google Scholar 

  • Shikanai T, Munekage Y, Kimura KJ (2002) Regulation of proton-to-electron stoichiometry in photosynthetic electron transport: physiological function in photoprotection. J Plant Res 115:3–10

    PubMed  CAS  Google Scholar 

  • Sözer Ö (2011) Carotenoids assist in assembly and functions of photosynthetic complexes in cyanobacteria. Doctoral Thesis. Szeged, Hungary

  • Srinivasan N, Golbeck JH (2009) Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. Biochim Biophys Acta 1787:1057–1088

    PubMed  CAS  Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA, Arntzen CJ (eds) Photosynthesis III: photosynthetic membranes and light-harvesting systems. Springer-Verlag, Berlin, pp 1–84

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    PubMed  CAS  Google Scholar 

  • Staehelin LA, Arntzen CJ (eds) (1986) Photosynthesis III: photosynthetic membranes and light-harvesting systems. In: Pirson A, Zimmerman MH (series eds) Encyclopedia of plant physiology, vol 19. Springer-Verlag, Berlin

  • Staehelin LA, van der Staay GWM (1996) In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 11–30

    Google Scholar 

  • Steigmiller S, Turina P, Gräber P (2008) The thermodynamic H+/ATP ratios of the H+-ATP synthases from chloroplasts and Escherichia coli. Proc Natl Acad Sci USA 105:3745–3750

    PubMed  CAS  Google Scholar 

  • Stirbet A (2013) Excitonic connectivity between Photosystem II units: what is it, and how to measure it? Photosynth Res. doi:10.1007/s11120-013-9863-9

    PubMed  Google Scholar 

  • Stitt M (1986) Limitation of photosynthesis by carbon metabolism. I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2. Plant Physiol 81:1115–1122

    PubMed  CAS  Google Scholar 

  • Strasser RJ (1978) The grouping model of plant photosynthesis. In: Akoyunoglou G (ed) Chloroplast development. Elsevier, North Holland, pp 513–524

    Google Scholar 

  • Strasser RJ, Stirbet AD (2001) Estimation of the energetic connectivity of PSII centres in plants using the fluorescence rise O-J-I-P. Fitting of experimental data to three different PS II models. Math Comput Simul 56:451–461

    Google Scholar 

  • Suorsa M, Sirpiö S, Aro E-M (2009) Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. Mol Plant 2:1127–1140

    PubMed  CAS  Google Scholar 

  • Svensson P, Andreasson E, Albertsson PA (1991) Heterogeneity among photosystem I. Biochim Biophys Acta 1060:45–50

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates

  • Takahama U, Shimizu-Takahama M, Heber U (1981) The redox state of the NADP system in illuminated chloroplasts. Biochim Biophys Acta 637:530–539

    CAS  Google Scholar 

  • Takahashi Y, Yasui TA, Stauber EJ, Hippler M (2004) Comparison of the subunit compositions of the PSI-LHCI supercomplex and the LHCI in the green alga Chlamydomonas reinhardtii. Biochemistry 43:7816–7823

    PubMed  CAS  Google Scholar 

  • Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954

    PubMed  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, noninvasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    PubMed  CAS  Google Scholar 

  • Thornton LE, Roose JL, Pakrasi HB, Ikeuchi M (2005) The low molecular weight proteins of photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 121–138

  • Tikkanen M, Nurmi M, Suorsa M, Danielsson R, Mamedov F, Styring S, Aro EM (2008) Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim Biophys Acta 1777:425–432

    PubMed  CAS  Google Scholar 

  • Tóth S, Schansker G, Strasser R (2005) In intact leaves, the maximum fluorescence level (F M ) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochim Biophys Acta 1708:275–282

    PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    PubMed  Google Scholar 

  • Trebst A (2003) Function of beta-carotene and tocopherol in photosystem II. Z Naturforsch C 58:609–620

    PubMed  CAS  Google Scholar 

  • Trissl H-W, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 64:974–988

    PubMed  CAS  Google Scholar 

  • Tyystjärvi E (2013) Photoinhibition of Photosystem II. Int Rev Cell Mol Biol 300:243–303

    PubMed  Google Scholar 

  • Tyystjärvi E, Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218

    PubMed  Google Scholar 

  • Tyystjärvi E, Vass I (2004) Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Series: advances in photosynthesis and respiration, vol 19. Kluwer Academic Publishers, Dordrecht, pp 363–388

  • Tyystjärvi E, Kettunen R, Aro E-M (1994) The rate constant of photoinhibition in vitro is independent of the antenna size of Photosystem II but depends on temperature. Biochim Biophys Acta 1186:177–185

    Google Scholar 

  • Tyystjärvi E, Rantamäki S, Tyystjärvi J (2009) Connectivity of Photosystem II is the physical basis of retrapping in photosynthetic thermoluminescence. Biophys J 96:3735–3743

    PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    PubMed  CAS  Google Scholar 

  • Vallon O, Wollman FA, Olive J (1986) Lateral distribution of the main protein complexes of the photosynthetic apparatus in Chlamydomonas reinhardtii and in spinach. An immunocytochemical study using intact thylakoid membranes and a PS II-enriched membrane preparation. Photobiochem Photobiophys 12:203–220

    CAS  Google Scholar 

  • Vallon O, Bulte L, Dainese P, Olive J, Bassi R, Wollman FA (1991) Lateral redistribution of cytochrome b 6 f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88:8262–8266

    PubMed  CAS  Google Scholar 

  • van Amerongen H, Croce R (2013) Light harvesting in photosystem II. Photosynth Res. doi:10.1007/s11120-013-9824-3

    Google Scholar 

  • van Amerongen H, Dekker JP (2003) Light-harvesting in photosystem II. In: Green BR, Parsons WW (eds) Series: advances in photosynthesis and respiration, vol 13. Kluwer Academic Publishers, Dordrecht, pp 219–251

    Google Scholar 

  • van Gorkom HJ, Yocum CF (2005) The calcium and chloride cofactors. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Kluwer Academic Publishers, Dordrecht, pp 307–328

    Google Scholar 

  • van Rensen JJS, Klimov V (2005) Bicarbonate interactions. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Kluwer Academic Publishers, Dordrecht, pp 329–345

    Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta 1817:209–217

    PubMed  CAS  Google Scholar 

  • Vičánková A, Kutik J (2005) Chloroplast ultrastructural development in vascular bundle sheath cells of two different maize (Zea mays L.) genotypes. Plant Soil Environ 51:491–495

    Google Scholar 

  • Vollmar M, Schlieper D, Winn M, Büchner C, Groth G (2009) Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 284:18228–18235

    PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2004) System analysis of photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of Photosystem II: a challenging view. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 133–172

  • Witt HT (2005) Photosystem II: structural elements, the first 3D crystal structure and functional implications. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Kluwer Academic Publishers, Dordrecht, pp 425–447

    Google Scholar 

  • Wydzynski TJ, Satoh K (eds) (2005) Photosystem II. The light-driven water: plastoquinone oxidoreductase. Springer, The Netherlands

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Hase T, Endo T, Nishioka M, Makino A, Tomizawa KI, Miyake C (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants—stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. Plant Cell Physiol 47:1355–1371

    PubMed  CAS  Google Scholar 

  • Zellnig G, Zechmann B, Perktold A (2004) Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma 223:221–227

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ET was financially supported by the Academy of Finland. TA and AR were supported by the Russian Federal Target Programme (8077 and 14.512.11.0097). IK was supported by the Russian Foundation of Basic Research (projects 12-07-33036 and 12-04-31839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esa Tyystjärvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antal, T.K., Kovalenko, I.B., Rubin, A.B. et al. Photosynthesis-related quantities for education and modeling. Photosynth Res 117, 1–30 (2013). https://doi.org/10.1007/s11120-013-9945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9945-8

Keywords

Navigation