Abstract
Mixotrophic cultivation of cyanobacteria in wastewaters with flue gas sparging has the potential to simultaneously sequester carbon content from gaseous and aqueous streams and convert to biomass and biofuels. Therefore, it was of interest to study the effect of mixotrophy and elevated CO2 on metabolism, morphology and rhythm of gene expression under diurnal cycles. We chose a diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 as a model, which is a known hydrogen producer with robust circadian rhythm. Cyanothece 51142 grows faster with nitrate and/or an additional carbon source in the growth medium and at 3 % CO2. Intracellular glycogen contents undergo diurnal oscillations with greater accumulation under mixotrophy. While glycogen is exhausted by midnight under autotrophic conditions, significant amounts remain unutilized accompanied by a prolonged upregulation of nifH gene under mixotrophy. This possibly supports nitrogen fixation for longer periods thereby leading to better growth. To gain insights into the influence of mixotrophy and elevated CO2 on circadian rhythm, transcription of core clock genes kaiA, kaiB1 and kaiC1, the input pathway, cikA, output pathway, rpaA and representatives of key metabolic pathways was analyzed. Clock genes’ transcripts were lower under mixotrophy suggesting a dampening effect exerted by an external carbon source such as glycerol. Nevertheless, the genes of the clock and important metabolic pathways show diurnal oscillations in expression under mixotrophic and autotrophic growth at ambient and elevated CO2, respectively. Taken together, the results indicate segregation of light and dark associated reactions even under mixotrophy and provide important insights for further applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun. doi:10.1038/ncomms1139
Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB (2013) Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol 161:1334–1346
Feng X, Bandyopadhyay A, Berla B, Page L, Wu B, Pakrasi HB, Tang YJ (2010) Mixotrophic and photoheterotrophic metabolism in Cyanothece sp. ATCC 51142 under continuous light. Microbiology 156:2566–2574
Golden SS, Canales SR (2003) Cyanobacterial circadian clocks—timing is everything. Nat Rev Microbiol 1:191–199
Heinhorst S, Cannon GC, Shively JM (2006) Carboxysomes and Carboxysome-like inclusions. In: Shively JM (ed) Microbiology Monographs. Heidelberg: Springer, Berlin, pp 141–165
Kondo T, Ishiura M (2000) The circadian clock of cyanobacteria. BioEssays 22:10–15
Krishnakumar S, Gaudana SB, Viswanathan GA, Pakrashi HB, Wangikar PP (2013) Rhythm of nitrogen fixation by Cyanothece sp. ATCC 51142 under fully aerobic conditions. Biotechnol Bioeng. doi:10.1002/bit.24882
Lang NJ, Krupp JM, Koller AL (1987) Morphological and ultrastructural changes in vegetative cells and heterocysts of Anabaena variabilis grown with fructose. J Bacteriol 169:920–923
Levitan O, Rosenberg G, Setlik I, Setlikova E, Grigel J, Klepetar J, Prasil O, Berman-Frank I (2007) Elevated CO2 enhances nitrogen fixation and growth in the marine Cyanobacterium Trichodesmium. Glob Change Biol 13:531–538
Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246
Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energy 34:7404–7416
Min HT, Sherman LA (2010) Genetic transformation and mutagenesis via single-stranded dna in the unicellular, diazotrophic cyanobacteria of the genus Cyanothece. Appl Environ Microbiol 76(22):7641–7645. doi:10.1128/Aem.01456-10
Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415
Nigam A, Phale PS, Wangikar PP (2012) Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresour Technol 114:484–491
Reddy KJ, Haskell JB, Sherman DM, Sherman LA (1993) Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J Bacteriol 175:1284–1292
Savage N (2011) Algae: the scum solution. Nature 474:S15–S16
Schneegurt MA, Sherman DM, Nayar S, Sherman LA (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176:1586–1597
Schneegurt MA, Sherman DM, Sherman LA (1997) Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142. Arch Microbiol 167:89–98
Schneegurt MA, Tucker DL, Ondr JK, Sherman DM, Sherman LA (2000) Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, heterotrophically grown in continuous dark. J Phycol 36:107–117
Sherman LA, Min H, Toepel J, Pakrasi HB (2010) Better living through Cyanothece—unicellular diazotrophic cyanobacteria with highly versatile metabolic systems. In: Hallenbeck PC (ed) Recent advances in phototrophic prokaryotes, advances in experimental medicine and biology, vol 675. Springer, New York, pp 275–290
Stöckel J, Welsh EA, Liberton M, Kunnvakkam R, Aurora R, Pakrasi HB (2008) Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl Acad Sci USA 105:6156–6161
Stöckel J, Elvitigala TR, Liberton M, Pakrasi HB (2013) Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142. PLoS One 8:e56887
Toepel J, Welsh E, Summerfield TC, Pakrasi HB, Sherman LA (2008) Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol 190:3904–3913
Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:250–259
Vijayan V, O’Shea EK (2013) Sequence determinants of circadian gene expression phase in cyanobacteria. J Bacteriol 195:665–671
Vinh NX, Chetty M, Coppel R, Gaudana S, Wangikar PP (2013) A model of the circadian clock in the cyanobacterium Cyanothece sp. ATCC 51142. BMC Bioinformatics 14(Suppl 2):S14. doi:10.1186/1471-2105-14-S2-S14
Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—byproduct of biodiesel production. Biotechnol Biofuels 5:13
Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173
Acknowledgments
The work was partially funded by an Australia-India Strategic Research Fund (AISRF) grant to P.P.W. and M.C. The grant to the Indian side was provided by Department of Biotechnology, Ministry of Science and Technology, Government of India, grant number: BT/Indo-Aus/04/04/2009. Authors thank Dr. Ganesh A Viswanathan and Ms. Girija S. Kalantre, IIT Bombay, for assistance with microscopy and Prof. Himadri B. Pakrasi, Washington University in St. Louis and Prof. Louis A. Sherman, Purdue University, for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gaudana, S.B., Alagesan, S., Chetty, M. et al. Diurnal rhythm of a unicellular diazotrophic cyanobacterium under mixotrophic conditions and elevated carbon dioxide. Photosynth Res 118, 51–57 (2013). https://doi.org/10.1007/s11120-013-9888-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11120-013-9888-0