Skip to main content
Log in

Spectral properties of a divinyl chlorophyll a harboring mutant of Synechocystis sp. PCC6803

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A divinyl chlorophyll (DV-Chl) a harboring mutant of Synechocystis sp. PCC 6803, in which chlorophyll species is replaced from monovinyl(normal)-Chl a to DV-Chl a, was characterized. The efficiency of light utilization for photosynthesis was decreased in the mutant. Absorption spectra at 77 K and their fourth derivative analyses revealed that peaks of each chlorophyll forms were blue-shifted by 1–2 nm, suggesting lowered stability of chlorophylls at their binding sites. This was also true both in PSI and PSII complexes. On the other hand, fluorescence emission spectra measured at 77 K were not different between wild type and the mutant. This indicates that the mode of interaction between chlorophyll and its binding pockets responsible for emitting fluorescence at 77 K is not altered in the mutant. P700 difference spectra of thylakoid membranes and PSI complexes showed that the spectrum in Soret region was red-shifted by 7 nm in the mutant. This is a characteristic feature of DV-Chl a. Microenvironments of iron–sulfur center of a terminal electron acceptor of PSI complex, P430, were practically the same as that of wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DDM:

Dodecyl-β-d-maltoside

DV-Chl a :

Divinyl chlorophyll a

DVR:

Divinyl reductase

LHC:

Light-harvesting complex

MES:

2-Morpholinoethanesulfonic acid

MV-Chl a :

Monovinyl chlorophyll a

PMS:

Phenazine methosulphate

PSI and II:

Photosystem I and II

Synechocystis 6803:

Synechocystis sp. PCC6803

References

  • Ben-Shem A, Frolow F, Nelson N (2003) The crystal structure of plant photosystem I. Nature 426:630–635

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Hopkins DW (1970a) Higher derivative analysis of complex absorption spectra. Photochem Photobiol 12:439–450

    Article  Google Scholar 

  • Butler WL, Hopkins DW (1970b) An analysis of fourth derivative spectra. Photochem Photobiol 12:451–456

    Article  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • French CS (1971) The distribution and action in photosynthesis of several forms of chlorophyll. Proc Natl Acad Sci USA 68:2893–2897

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P, Kraub N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann E, Gathmann S, Rupprecht E, Golecki J, Schneider D (2009) Thylakoid membrane reduction affects the photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 149:735–744

    Article  PubMed  CAS  Google Scholar 

  • Grabowski B, Cunningham FX Jr, Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci USA 98:2911–2916

    Article  PubMed  CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll–carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  PubMed  CAS  Google Scholar 

  • Heathcote P, Fyfe PK, Jones MR (2002) Reaction centres: the structure and evolution of biological solar power. Trends Biochem Sci 27:79–87

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T, Ke B (1971a) A new photosynthetic pigment “P430”: its possible role as the primary electron acceptor of photosystem I. Proc Natl Acad Sci USA 68:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T, Ke B (1971b) A further study of P430: a possible primary electron acceptor of photosystem I. Arch Biochem Biophys 147:99–108

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T, Ke B (1972) Difference spectra and extinction coefficients of P700. Biochim Biophys Acta 267:160–171

    Article  PubMed  CAS  Google Scholar 

  • Islam MR, Aikawa S, Midorikawa T, Kashino Y, Satoh K, Koike H (2008) slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant Physiol 148:1068–1081

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Tanaka A (2011) Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. Proc Natl Acad Sci USA 108:18014–18019

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Yokono M, Tanaka R, Tanaka A (2008) Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J Biol Chem 283:9002–9011

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV, Schlodder E, van Grondelle R, Dekker J (2006) The long wavelength chlorophylls of photosystem I. In: Golbeck (ed) Photosystem I. The light-driven plastocyanin: ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol 24, Springer, Dordrecht, pp 177–192

  • Ke B (1972) The rise time of photoreduction, difference spectrum, and oxidation–reduction potential of P430. Arch Biochem Biophys 152:70–77

    Article  PubMed  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: an overview. In: Govindjee (ed) photosynthesis. photobiochemistry and photobiophysics. Advances in photosynthesis research, vol 10. Kluwer Academic Press, Dordrecht, pp 1–46

  • Koike H, Katoh S (1982) Spectral features of the bound electron acceptor A2 of photosystem I. Photochem Photobiol 35:527–531

    Article  CAS  Google Scholar 

  • Koike H, Kashino Y, Satoh K (1993) Interactions of halogenated benzoquinones with the non-heme iron (Q400) in photosystem II. Z Naturforsch 48C:168–173

    Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    Article  CAS  Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  PubMed  CAS  Google Scholar 

  • Nyhus KJ, Ikeuchi M, Inoue Y, Whitmarsh J, Pakrasi HB (1992) Purification and characterization of the photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Biol Chem 267:12489–12495

    PubMed  CAS  Google Scholar 

  • Pulles MPJ, van Gorkom HJ, Verschoor GAM (1976) Primary reactions of photosystem II at low pH. 2. Light-induced changes of absorbance and electron spin resonance in spinach chloroplasts. Biochim Biophys Acta 440:98–106

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Butler WL (1978) Low temperature spectral properties of subchloroplast fractions purified from spinach. Plant Physiol 61:373–379

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M, Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. J Biol Chem 276:4293–4297

    Article  PubMed  CAS  Google Scholar 

  • Shedbalker VP, Rebeiz CA (1992) Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal Biochem 207:261–266

    Article  Google Scholar 

  • Tomo T, Akimoto S, Ito H, Tsuchiya T, Fukuya M, Tanaka A, Mimuro M (2009) Replacement of chlorophyll with di-vinyl chlorophyll in the antenna and reaction center complexes of the cyanobacterium Synechocystis sp. PCC 6803: characterization of spectral and photochemical properties. Biochim Biophys Acta 1787:191–200

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57–64

    Article  CAS  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant of 21st century Center of Excellence Program to KS and by Chuo University Grant for Special Research to HK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Koike.

Additional information

This article is also dedicated to Professor Gernot Renger who passed away on 12th January 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.R., Watanabe, K., Kashino, Y. et al. Spectral properties of a divinyl chlorophyll a harboring mutant of Synechocystis sp. PCC6803. Photosynth Res 117, 245–255 (2013). https://doi.org/10.1007/s11120-013-9877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9877-3

Keywords

Navigation