Skip to main content

Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon

Abstract

Over 40 years ago, Joliot et al. (Photochem Photobiol 10:309–329, 1969) designed and employed an elegant and highly sensitive electrochemical technique capable of measuring O2 evolved by photosystem II (PSII) in response to trains of single turn-over light flashes. The measurement and analysis of flash-induced oxygen evolution patterns (FIOPs) has since proven to be a powerful method for probing the turnover efficiency of PSII. Stemler et al. (Proc Natl Acad Sci USA 71(12):4679–4683, 1974), in Govindjee’s lab, were the first to study the effect of “bicarbonate” on FIOPs by adding the competitive inhibitor acetate. Here, we extend this earlier work by performing FIOPs experiments at various, strictly controlled inorganic carbon (Ci) levels without addition of any inhibitors. For this, we placed a Joliot-type bare platinum electrode inside a N2-filled glove-box (containing 10–20 ppm CO2) and reduced the Ci concentration simply by washing the samples in Ci-depleted media. FIOPs of spinach thylakoids were recorded either at 20-times reduced levels of Ci or at ambient Ci conditions (390 ppm CO2). Numerical analysis of the FIOPs within an extended Kok model reveals that under Ci-depleted conditions the miss probability is discernibly larger (by 2–3 %) than at ambient conditions, and that the addition of 5 mM HCO3 to the Ci-depleted thylakoids largely restores the original miss parameter. Since a “mild” Ci-depletion procedure was employed, we discuss our data with respect to a possible function of free or weakly bound HCO3 at the water-splitting side of PSII.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

α:

Miss parameter

β:

Double hit parameter

Ci :

Inorganic carbon (HCO3 , CO2, CO3 2−)

C i :

Inorganic carbon depleted

C +i :

Containing ambient level of inorganic carbon

FIOP:

Flash-induced oxygen evolution pattern

MIMS:

Membrane-inlet mass spectrometry

PSII:

Photosystem II

OEC:

Oxygen-evolving complex

S i states:

Oxidation states of the OEC, where i is the number of stored oxidizing equivalents

References

  • Allakhverdiev SI, Yruela I, Picorel R, Klimov VV (1997) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci USA 94(10):5050–5054

    PubMed  CAS  Google Scholar 

  • Ananyev G, Dismukes GC (2005) How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res 84(1):355–365

    PubMed  CAS  Google Scholar 

  • Ananyev G, Nguyen T, Putnam-Evans C, Dismukes GC (2005) Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of photosystem II. Photochem Photobiol Sci 4(12):991–998

    PubMed  CAS  Google Scholar 

  • Aoyama C, Suzuki H, Sugiura M, Noguchi T (2008) Flash-induced FT-IR difference spectroscopy shows no evidence for the structural coupling of bicarbonate to the oxygen-evolving Mn cluster in photosystem II. Biochemistry 47(9):2760–2765

    PubMed  CAS  Google Scholar 

  • Baranov SV, Ananyev GM, Klimov VV, Dismukes GC (2000) Bicarbonate accelerates assembly of the inorganic core of the water-oxidizing complex in manganese depleted photosystem II: a proposed biogeochemical role for atmospheric carbon dioxide in oxygenic photosynthesis. Biochemistry 39(20):6060–6065

    PubMed  CAS  Google Scholar 

  • Baranov SV, Tyryshkin AM, Katz D, Dismukes GC, Ananyev GM, Klimov VV (2004) Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation. Biochemistry 43(7):2070–2079

    PubMed  CAS  Google Scholar 

  • Beckmann K, Messinger J, Badger MR, Wydrzynski T, Hillier W (2009) On-line mass spectrometry: membrane inlet sampling. Photosynth Res 102:511–522

    PubMed  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2001) Iron coordination in photosystem II: interaction between bicarbonate and QB pocket studied by Fourier transform infrared spectroscopy. Biochemistry 40:4044–4052

    PubMed  CAS  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in Photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta 1817(1):26–43

    PubMed  CAS  Google Scholar 

  • Christen G, Seeliger A, Renger G (1999) P680 reduction kinetics and redox transition probability of the water oxidizing complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38(19):6082–6092

    PubMed  CAS  Google Scholar 

  • Clausen J, Beckmann K, Junge W, Messinger J (2005) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol 139(3):1444–1450

    PubMed  CAS  Google Scholar 

  • Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta. doi:10.1016/j.bbabio.2013.01.013 (in press)

    Google Scholar 

  • Cox N, Jin L, Jaszewski A, Smith PJ, Krausz E, Rutherford AW, Pace R (2009) The semiquinone-iron complex of photosystem II: structural insights from ESR and theoretical simulation; evidence that the native ligand to the non-heme iron is carbonate. Biophys J 97(7):2024–2033

    PubMed  CAS  Google Scholar 

  • Dasgupta J, Tyryshkin AM, Dismukes GC (2007) ESEEM spectroscopy reveals carbonate and an N-donor protein-ligand binding to Mn2+ in the photoassembly reaction of the Mn4Ca cluster in photosystem II. Angew Chem Int Ed 46(42):8028–8031

    CAS  Google Scholar 

  • Dasgupta J, Ananyev GM, Dismukes GC (2008) Photoassembly of the water-oxidizing complex in photosystem II. Coord Chem Rev 252(3–4):347–360

    PubMed  CAS  Google Scholar 

  • Dasgupta J, Tyryshkin AM, Baranov SV, Dismukes GC (2010) Bicarbonate coordinates to Mn3+ during photo-assembly of the catalytic Mn4Ca core of photosynthetic water oxidation: EPR characterization. Appl Magn Reson 37(1–4):137–150

    Google Scholar 

  • Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle: basic framework and possible realization at the atomic level. Coord Chem Rev 252(3–4):273–295

    CAS  Google Scholar 

  • Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16(1–2):3–10

    PubMed  CAS  Google Scholar 

  • de Wijn R, van Gorkom HJ (2002) S-state dependence of the miss probability in photosystem II. Photosynth Res 72(2):217–222

    PubMed  Google Scholar 

  • Diner BA (1977) Dependence of deactivation reactions of photosystem II on redox state of plastoquinone pool A varied under anaerobic conditions. Equilibria on the acceptor side of photosystem II. Biochim Biophys Acta 460:247–258

    PubMed  CAS  Google Scholar 

  • Diner BA, Petrouleas V (1990) Formation by NO of nitrosyl adducts of redox components of the photosystem II reaction center. 2. Evidence that HCO3 /CO2 binds to the acceptor-side non-heme iron. Biochim Biophys Acta 1015(1):141–149

    CAS  Google Scholar 

  • El-Shintinawy F, Govindjee (1990) Bicarbonate effect in leaf discs from spinach. Photosynth Res 24:189–200

    CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838

    PubMed  CAS  Google Scholar 

  • Forbush B, Kok B, McGloin MP (1971) Cooperation of charges in photosynthetic oxygen evolution. II. Damping of flash yield oscillation, deactivation. Photochem Photobiol 14(3):307–321

    CAS  Google Scholar 

  • Fromme R, Hagemann R, Renger G (1987) Comparative studies of electron transport and atrazine binding in thylakoids and PS II particles from spinach. In: Biggens J (ed) Progress in Photosynthesis Research, vol III. Martinus Nijhoff Publishers, Dordrecht, pp 783–786

    Google Scholar 

  • Govindjee, Xu C, van Rensen JJS (1997) On the requirement of bound bicarbonate for photosystem II activity. Z Naturforsch 52(1–2):24–32

  • Govindjee Weger HG, Turpin DH, van Rensen JJS, Devos OJ, Snel JFH (1991) Formate releases carbon dioxide/bicarbonate from thylakoid membranes: measurements by mass spectroscopy and infrared gas analyzer. Naturwissenschaften 78(4):168–170

    CAS  Google Scholar 

  • Govindjee, Kern J, Messinger J, Whitmarsh J (2010) Photosystem II. In: Encyclopedia of Life Sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0000669.pub2

  • Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank M, Saenger W, Zouni A (2010) Recent progress in the crystallographic studies of photosystem II. ChemPhysChem 11:1160–1171

    PubMed  CAS  Google Scholar 

  • Han GY, Mamedov F, Styring S (2012) Misses during water oxidation in photosystem II are S state-dependent. J Biol Chem 287(16):13422–13429

    PubMed  CAS  Google Scholar 

  • Hienerwadel R, Berthomieu C (1995) Bicarbonate binding to the non-heme iron of photosystem II investigated by Fourier transform infrared difference spectroscopy and 13C-labeled bicarbonate. Biochemistry 34:16288–16297

    PubMed  CAS  Google Scholar 

  • Hillier W, Messinger J (2005) Mechanism of photosynthetic oxygen production. In: Wydrzynski T, Satoh K (eds) Photosystem II. The Light-Driven water:plastoquinone oxidoredutase, vol 22. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 567–608

    Google Scholar 

  • Hillier W, McConnell I, Badger MR, Boussac A, Klimov VV, Dismukes GC, Wydrzynski T (2006) Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II. Biochemistry 45(7):2094–2102

    PubMed  CAS  Google Scholar 

  • Isgandarova S, Renger G, Messinger J (2003) Functional differences of photosystem II from Synechococcus elongatus and spinach characterized by flash-induced oxygen evolution patterns. Biochemistry 42(30):8929–8938

    PubMed  CAS  Google Scholar 

  • Joliot P (1972) Modulated light source use with the oxygen electrode. In: San Pietro A (ed) Photosynthesis and nitrogen fixation, vol 24 B. Methods of enzymology. Academic Press, New York, pp 123–134

    Google Scholar 

  • Joliot P (2003) Period-four oscillations of the flash-induced oxygen formation in photosynthesis. Photosynth Res 76(1–3):65–72

    PubMed  CAS  Google Scholar 

  • Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10:309–329

    CAS  Google Scholar 

  • Jursinic P (1981) Investigation of double turnovers in photosystem II charge separation and oxygen evolution with excitation flashes of different duration. Biochim Biophys Acta 635:38–52

    PubMed  CAS  Google Scholar 

  • Jursinic P, Stemler A (1982) A seconds range component of the reoxidation of the primary photosystem II acceptor Q: effects of bicarbonate depletion in chloroplasts. Biochim Biophys Acta 681(3):419–428

    CAS  Google Scholar 

  • Jursinic PA, Stemler A (1984) Effects of bicarbonate depletion on secondary acceptors of photosystem II. Biochim Biophys Acta 764(2):170–178

    CAS  Google Scholar 

  • Kebekus U, Messinger J, Renger G (1995) Structural changes in the water oxidizing complex monitored via the pH dependence of the reduction rate of redox state S1 by hydrazine and hydroxylamine in isolated spinach thylakoids. Biochemistry 34:6175–6182

    PubMed  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Baranov SV, Feyziev YM (1995a) Effects of bicarbonate and formate on the donor side of photosystem 2. Photosynth Res 46(1–2):219–225

    CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Feyziev YM, Baranov SV (1995b) Bicarbonate requirement for the donor side of photosystem II. FEBS Lett 363(3):251–255

    PubMed  CAS  Google Scholar 

  • Klimov VV, Hulsebosch RJ, Allakhverdiev SI, Wincencjusz H, van Gorkom HJ, Hoff AJ (1997) Bicarbonate may be required for ligation of manganese in the oxygen-evolving complex of photosystem II. Biochemistry 36(51):16277–16281

    PubMed  CAS  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution. Photochem Photobiol 11:457–476

    PubMed  CAS  Google Scholar 

  • Konermann L, Messinger J, Hillier W (2008) Mass spectrometry based methods for studying kinetics and dynamics in biological systems. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 26., Series advances in photosynthesis and respirationSpringer, Dordrecht, pp 167–190

    Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817(1):2–12

    PubMed  Google Scholar 

  • Krishtalik LI (2000) The mechanism of the proton transfer: an outline. Biochim Biophys Acta 1458(1):6–27

    PubMed  CAS  Google Scholar 

  • Mar T, Govindjee (1972) Kinetic models of oxygen evolution in photosynthesis. J Theoret Biol 36:427–446

    CAS  Google Scholar 

  • McConnell IL, Eaton-Rye JJ, Van Rensen JJS (2012) Regulation of photosystem II electron transport by bicarbonate. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Springer, Dordrecht, pp 475–500

    Google Scholar 

  • Mende D, Wiessner W (1985) Bicarbonate in vivo requirement of photosystem II in the green alga Chlamydobotrys stellata. J Plant Physiol 118(3):259–266

    PubMed  CAS  Google Scholar 

  • Messinger J (1993) Untersuchungen über die reaktiven Eigenschaften der verschiedenen Redoxzustände der Wasseroxidase Höherer Pflanzen. TU Berlin, Berlin

    Google Scholar 

  • Messinger J, Renger G (1990) The reactivity of hydrazine with PS II strongly depends on the redox state of the water oxidizing system. FEBS Lett 277:141–146

    PubMed  CAS  Google Scholar 

  • Messinger J, Renger G (1993) Generation, oxidation by the oxidized form of the tyrosine of polypeptide D2, and possible electronic configuration of the redox States S0, S−1 and S−2 of the water oxidase in isolated spinach thylakoids. Biochemistry 32(36):9379–9386

    PubMed  CAS  Google Scholar 

  • Messinger J, Renger G (2008) Photosynthetic water splitting. In: Renger G (ed) Primary processes of photosynthesis, part 2 principles and apparatus, vol 9., Comprehensive series in photochemical and photobiological sciencesRSC Publishing, Cambridge, pp 291–351

    Google Scholar 

  • Messinger J, Schröder WP, Renger G (1993) Structure-function relations in photosystem II. Effects of temperature and chaotropic agents on the period four oscillation of flash induced oxygen evolution. Biochemistry 32:7658–7668

    PubMed  CAS  Google Scholar 

  • Messinger J, Badger MR, Wydrzynski T (1995) Detection of one slowly exchanging substrate water molecule in the S3 state of photosystem II. Proc Natl Acad Sci USA 92:3209–3213

    PubMed  CAS  Google Scholar 

  • Messinger J, Seaton G, Wydrzynski T, Wacker U, Renger G (1997) S−3 state of the water oxidase in photosystem II. Biochemistry 36:6862–6873

    PubMed  CAS  Google Scholar 

  • Metzner H (1978) Photosynthetic oxygen evolution. Academic Press, London

    Google Scholar 

  • Müh F, Glöckner C, Hellmich J, Zouni A (2012) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817(1):44–65

    PubMed  Google Scholar 

  • Nöring B, Shevela D, Renger G, Messinger J (2008) Effects of methanol on the Si-state transitions in photosynthetic water-splitting. Photosynth Res 98:251–260

    PubMed  Google Scholar 

  • Nugent JHA, Demetriou C, Lockett CJ (1987) Electron donation in photosystem II. Biochim Biophys Acta 894(3):534–542

    CAS  Google Scholar 

  • Pobeguts OV, Smolova TN, Timoshevsky DS, Klimov VV (2010) Interaction of bicarbonate with the manganese-stabilizing protein of photosystem II. J Photochem Photobiol B 100:30–37

    PubMed  CAS  Google Scholar 

  • Renger G (2010) The light reactions of photosynthesis. Curr Sci 98:1305–1319

    CAS  Google Scholar 

  • Renger G, Hanssum B (1988) Studies on the deconvolution of flash induced absorption changes into the difference spectra of individual redox steps within the water oxidizing enzyme system. Photosynth Res 16:243–259

    CAS  Google Scholar 

  • Renger G, Hanssum B (2009) Oxygen detection in biological systems. Photosynth Res 102(2–3):487–498

    PubMed  CAS  Google Scholar 

  • Renger G, Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski TJ, Satoh K (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol 22. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 139–175

    Google Scholar 

  • Saito K, Rutherford AW, Ishikita H (2013) Mechanism of proton-coupled quinone reduction in photosystem II. Proc Natl Acad Sci USA 110(3):954–959

    PubMed  CAS  Google Scholar 

  • Shevela D, Messinger J (2012) Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors. Biochim Biophys Acta 1817(8):1208–1212

    PubMed  CAS  Google Scholar 

  • Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G (2006a) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 8(29):3460–3466

    PubMed  CAS  Google Scholar 

  • Shevela DN, Khorobrykh AA, Klimov VV (2006b) Effect of bicarbonate on the water-oxidizing complex of photosystem II in the super-reduced S-states. Biochim Biophys Acta 1757(4):253–261

    PubMed  CAS  Google Scholar 

  • Shevela D, Klimov V, Messinger J (2007) Interactions of photosystem II with bicarbonate, formate and acetate. Photosynth Res 94(2–3):247–264

    PubMed  CAS  Google Scholar 

  • Shevela D, Klimov V, Messinger J (2008a) Formate-induced release of carbon dioxide/hydrogen carbonate from photosystem II. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the Sun. Springer, Glasgow, pp 497–501

    Google Scholar 

  • Shevela D, Su JH, Klimov V, Messinger J (2008b) Hydrogen carbonate is not a tightly bound constituent of the water-oxidizing complex in photosystem II. Biochim Biophys Acta 1777(6):532–539

    PubMed  CAS  Google Scholar 

  • Shevela D, Eaton-Rye JJ, Shen J-R, Govindjee (2012) Photosystem II and the unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817(8):1134–1151

    PubMed  CAS  Google Scholar 

  • Shinkarev V (2005) Flash induced oxygen evolution and other oscillatory processes. In: Wydrzynski T, Satoh K (eds) Photosystem II. The light-driven water: plastoquinone oxidoredutase, vol 22. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 539–565

    Google Scholar 

  • Shinkarev V, Wraight CA (1993) Oxygen evolution in photosynthesis: from unicycle to bicycle. Proc Natl Acad Sci USA 90:1834–1838

    PubMed  CAS  Google Scholar 

  • Shutova T, Kenneweg H, Buchta J, Nikitina J, Terentyev V, Chernyshov S, Andersson B, Allakhverdiev SI, Klimov VV, Dau H, Junge W, Samuelsson G (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27(5):782–791

    PubMed  CAS  Google Scholar 

  • Siegbahn PEM, Lundberg M (2006) Hydroxide instead of bicarbonate in the structure of the oxygen evolving complex. J Inorg Biochem 100(5–6):1035–1040

    PubMed  CAS  Google Scholar 

  • Stemler A (1980) Forms of dissolved carbon dioxide required for photosystem II activity in chloroplast membranes. Plant Physiol 65(6):1160–1165

    PubMed  CAS  Google Scholar 

  • Stemler A (1982) The functional role of bicarbonate in photosynthetic light reaction II. In: Govindjee (ed) Photosynthesis vol II. Academic Press, New York, pp 513–538

    Google Scholar 

  • Stemler AJ (2002) The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg. Photosynth Res 73(1–3):177–183

    PubMed  CAS  Google Scholar 

  • Stemler A, Govindjee (1973) Bicarbonate ion as a critical factor in photosynthetic oxygen evolution. Plant Physiol 52(2):119–123

    PubMed  CAS  Google Scholar 

  • Stemler AJ, Lavergne J (1997) Evidence that formate destabilizes the S−1 state of the oxygen-evolving mechanism in Photosystem II. Photosynth Res 51(2):83–92

    CAS  Google Scholar 

  • Stemler A, Babcock GT, Govindjee (1974) Effect of bicarbonate on photosynthetic oxygen evolution in flashing light in chloroplast fragments. Proc Natl Acad Sci USA 71(12):4679–4683

    PubMed  CAS  Google Scholar 

  • Styring S, Rutherford AW (1987) In the oxygen evolving complex of photosystem II the S0 state is oxidized to the S1 State by Y +D (Signal IIslow). Biochemistry 26:2401–2405

    CAS  Google Scholar 

  • Suzuki H, Sugiura M, Noguchi T (2012) Determination of the miss probabilities of individual S-state transitions during photosynthetic water oxidation by monitoring electron flow in photosystem II using FTIR spectroscopy. Biochemistry 51(34):6776–6785

    PubMed  CAS  Google Scholar 

  • Ulas G, Brudvig GW (2010) Zwitterion modulation of O2-evolving activity of cyanobacterial photosystem II. Biochemistry 49(37):8220–8227

    PubMed  CAS  Google Scholar 

  • Ulas G, Olack G, Brudvig GW (2008) Evidence against bicarbonate bound in the O2-evolving complex of photosystem II. Biochemistry 47(10):3073–3075

    PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    PubMed  CAS  Google Scholar 

  • Van Rensen JJS (2002) Role of bicarbonate at the acceptor side of photosystem II. Photosynth Res 73(1–3):185–192

    PubMed  Google Scholar 

  • Van Rensen JJS, Klimov VV (2005) Bicarbonate interactions. In: Wydrzynski T, Satoh K (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol 22. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 329–346

    Google Scholar 

  • Van Rensen JJS, Xu C, Govindjee (1999) Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis. Physiol Plant 105:585–592

    Google Scholar 

  • Vass I, Deak Z, Hideg E (1990a) Charge equilibrium between the water oxidizing complex and the electron donor tyrosine D in photosystem II. Biochim Biophys Acta 1017:63–69

    CAS  Google Scholar 

  • Vass I, Deak Z, Jegerschold C, Styring S (1990b) The accessory electron-donor tyrosine D of photosystem II is slowly reduced in the dark during low-temperature storage of isolated thylakoids. Biochim Biophys Acta 1018(1):41–46

    CAS  Google Scholar 

  • Vermaas WEJ, Renger G, Dohnt G (1984) The reduction of the oxygen evolving system in chloroplasts by thylakoid components. Biochim Biophys Acta 764(2):194–202

    CAS  Google Scholar 

  • Villarejo A, Shutova T, Moskvin O, Forssen M, Klimov VV, Samuelsson G (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J 21(8):1930–1938

    PubMed  CAS  Google Scholar 

  • Warburg O (1964) Prefactory chapter. Annu Rev Biochem 33:1–18

    PubMed  CAS  Google Scholar 

  • Warburg O, Krippahl G (1958) Hill-Reaktionen. Z Naturforsch B 13(8):509–514

    Google Scholar 

  • Winget GD, Izawa S, Good NE (1965) Stoichiometry of photophosphorylation. Biochem Biophys Res Commun 21(5):438–441

    PubMed  CAS  Google Scholar 

  • Wydrzynski T, Govindjee (1975) New site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach-chloroplasts. Biochim Biophys Acta 387(2):403–408

    PubMed  CAS  Google Scholar 

  • Wydrzynski T, Satoh K (eds) (2005) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol 22. Advances in photosynthesis and respiration. Springer, Dordrecht

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    PubMed  CAS  Google Scholar 

  • Zaharieva I, Wichmann JM, Dau H (2011) Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations. J Biol Chem 286(20):18222–18228

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Knut and Alice Wallenberg Foundation, the Kempe Foundation, the Swedish Research Council (VR), the Strong Research Environment Solar Fuels (Umeå University), the Artificial Leaf Project (K&A Wallenberg Foundation) and the Max-Planck Gesellschaft. The authors would like to thank Govindjee, Vyacheslav Klimov, and Alan Stemler for fruitful discussions on the “bicarbonate effect” over the last few years and Ethel Hüttel for sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitriy Shevela or Johannes Messinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shevela, D., Nöring, B., Koroidov, S. et al. Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon. Photosynth Res 117, 401–412 (2013). https://doi.org/10.1007/s11120-013-9875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9875-5

Keywords

  • Flash-induced oxygen evolution patterns
  • S states
  • An extended Kok model
  • Hydrogen carbonate (bicarbonate)
  • Photosynthetic water oxidation