Skip to main content

Advertisement

Log in

Chlorophyll d and Acaryochloris marina: current status

Photosynthesis Research Aims and scope Submit manuscript

Abstract

The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

Acaryochloris :

Acaryochloris marina

APC:

Allophycocyanin

Chl:

Chlorophyll

EPR:

Electron paramagnetic resonance

ESE:

Electron spin echo

FTIR:

Fourier transform infrared spectroscopy

ORF:

Open reading frame

PBP:

Phycobiliprotein

PC:

Phycocyanin

PE:

Phycoerythrin

PEC:

Phycoerythrocyanin

Phe:

Pheophytin

PS:

Photosystem

QA :

The primary quinine electron acceptor of photosystem II

YZ :

Redox-active tyrosine in photosystem II

References

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Kobayashi M (2001) Detection of chlorophyll d′ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17:205–208

    PubMed  CAS  Google Scholar 

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S, Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers–unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74:97–107

    PubMed  CAS  Google Scholar 

  • Akutsu S, Fujinuma D, Furukawa H, Watanabe T, Ohnishi-Kameyama M, Ono H, Ohkubo S, Miyashita H, Kobayashi M (2011) Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1 isolated from Lake Biwa. Photochem Photobiol 33:35–40

    CAS  Google Scholar 

  • Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010a) Photosynthetic hydrogen production. J Photochem Photobiol, C 11:101–113

    CAS  Google Scholar 

  • Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M (2010b) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107:3924–3929

    PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA)—and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108:8054–8058

    PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    PubMed  CAS  Google Scholar 

  • Bailleul B, Johnson X, Finazzi G, Barber J, Rappaport F, Telfer A (2008) The thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d-dominated cyanobacterium, Acaryochloris marina. J Biol Chem 283:25218–25226

    PubMed  CAS  Google Scholar 

  • Beale SI (2006) Biosynthesis of 5-aminolevulinic acid. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25. Springer, Dordrecht, pp 147–158

    Google Scholar 

  • Behrendt L, Larkum AWD, Norman A, Qvortrup K, Chen M, Ralph P, Sorensen SJ, Trampe E, Kuhl M (2011) Endolithic chlorophyll d-containing phototrophs. ISME J 5:1072–1076

    PubMed  CAS  Google Scholar 

  • Bell PD, Xin Y, Blankenship RE (2009) Purification and characterization of cytochrome c6 from Acaryochloris marina. Photosynth Res 102:43–51

    PubMed  CAS  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    CAS  Google Scholar 

  • Bibby T, Nield J, Partensky F, Barber J (2001a) Oxyphotobacteria. Antenna ring around photosystem I. Nature 413(6856):590

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001b) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    PubMed  CAS  Google Scholar 

  • Björn L, Papageorgiou G, Blankenship R (2009) A viewpoint: why chlorophyll a. Photosynth Res 99:85–98

    PubMed  Google Scholar 

  • Boichenko V, Klimov V, Miyashita H, Miyachi S (2000) Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. Photosynth Res 65:269–277

    PubMed  CAS  Google Scholar 

  • Bollivar DW (2006) Recent advances in chlorophyll biosynthesis. Photosynth Res 90:173–194

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE (1994) Directed muataional analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640

    PubMed  CAS  Google Scholar 

  • Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431

    PubMed  CAS  Google Scholar 

  • Chen M, Cai Z-L (2007) Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand. Biochim Biophys Acta 1767:603–609

    PubMed  CAS  Google Scholar 

  • Chen M, Scheer H (2012) Extending the limits of natural photosynthesis and implications for technical light harvesting. J Porphyr Phthalocya 15:1–15

    Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152

    PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005a) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374

    PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005b) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579:1306–1310

    PubMed  CAS  Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005c) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28

    PubMed  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005d) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    PubMed  CAS  Google Scholar 

  • Chen M, Zhang Y, Blankenship RE (2008) Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth Res 95:147–154

    PubMed  CAS  Google Scholar 

  • Chen M, Floetenmeyer M, Bibby TS (2009) Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett 583(15):2535–2539

    PubMed  CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    PubMed  CAS  Google Scholar 

  • Chen M, Li YQ, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254

    PubMed  CAS  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    CAS  Google Scholar 

  • Cohen Z, Margheri MC, Tomaselli L (1995) Chemotaxonomy of cyanobacteria. Phytochemistry 40:1155–1158

    CAS  Google Scholar 

  • De Los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Google Scholar 

  • Deng G, Liu F, Liu X, Zhao J (2012) Significant energy transfer from CpcG2-phycobilisomes to photosystem I in the cyanobacterium Synechococcus sp. PCC 7002 in the absence of ApcD-dependent state transitions. FEBS Lett 586:2342–2345

    PubMed  CAS  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36

    PubMed  Google Scholar 

  • Duxbury Z, Schliep M, Ritchie R, Larkum AD, Chen M (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth Res 101:69–75

    PubMed  CAS  Google Scholar 

  • Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:10507–10511

    PubMed  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340

    PubMed  CAS  Google Scholar 

  • Fleming ED, Prufert-Bebout L (2010) Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes. J Geophys Res 115:G00d07

    Google Scholar 

  • Fukusumi T, Matsuda K, Mizoguchi T, Miyatake T, Ito S, Ikeda T, Tamiaki H, Oba T (2012) Non-enzymatic conversion of chlorophyll-a into chlorophyll-d in vitro: a model oxidation pathway for chlorophyll-d biosynthesis. FEBS Lett 586:2338–2341

    PubMed  CAS  Google Scholar 

  • Gallon JR (2005) N2 fixation by non-heterocystous cyanobacteria. In: Klipp W, Masepohl B, Gallon J, Newton W (eds) Genetics and regulation of nitrogen fixation in free-living bacteria, vol 2., Nitrogen fixation: Origins, Applications, and Research progressSpringer, Houten, pp 111–139

    Google Scholar 

  • Gao B, Boeglin WE, Zheng Y, Schneider C, Brash AR (2009) Evidence for an ionic intermediate in the transformation of fatty acid hydroperoxide by a catalase-related allene oxide synthase from the cyanobacterium Acaryochloris marina. J Biol Chem 284:22087–22098

    PubMed  CAS  Google Scholar 

  • Gao B, Boeglin WE, Brash AR (2010) Omega-3 fatty acids are oxygenated at the n-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1801:58–63

    PubMed  CAS  Google Scholar 

  • Goh F, Allen MA, Leuko S, Kawaguchi T, Decho AW, Burns BP, Neilan BA (2008) Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J 3:383–396

    PubMed  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559

    PubMed  CAS  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    PubMed  CAS  Google Scholar 

  • Holt AS (1961) Further evidence of the relation between 2-desvinyl-2-formyl-chlorophyll-a and chlorophyll-d. Can J Bot 39:327–331

    CAS  Google Scholar 

  • Holt AS, Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37:507–514

    CAS  Google Scholar 

  • Hoober JK, Eggink LL, Chen M (2007) Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res 94:387–400

    PubMed  CAS  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    PubMed  CAS  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Mörschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412:250–261

    PubMed  CAS  Google Scholar 

  • Ito H, Yokono M, Tanaka R, Tanaka A (2008) Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J Biol Chem 283:9002–9011

    PubMed  CAS  Google Scholar 

  • Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46:12473–12481

    PubMed  CAS  Google Scholar 

  • Jahn D, Moser J, Schubert W, Heinz DW (2006) Transfer RNA-dependent aminolevulinic acid formation: structure and function of glutamyl-trna synthetase, reductase and glutamate-1-semialdehyde-2,1-aminomutase. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25. Springer, Dordrecht, pp 159–171

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    PubMed  CAS  Google Scholar 

  • Kashiyama Y, Miyashita H, Ohkubo S, Ogawa NO, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Nagata T, Ohkouchi N (2008) Evidence of global chlorophyll d. Science 321:658

    PubMed  CAS  Google Scholar 

  • Kiss É (2012) Expression of the genes encoding the subunits of the Photosystem II core and the Hox hydrogenase are aiding acclimation of the cyanobacterium Acaryochloris marina. University of Szeged (PhD Thesis). http://doktori.bibl.u-szeged.hu/1664/3/Kiss_%C3%89va_thesis.pdf

  • Kiss É, Kós PB, Vass I (2009) Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803. J Biotechnol 142:31–37

    PubMed  CAS  Google Scholar 

  • Kiss É, Kós PB, Chen M, Vass I (2012) A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1817:1083–1094

    PubMed  CAS  Google Scholar 

  • Kiss É, Kós PB, Chen M, Vass I (2013) Functioning of the bidirectional hydrogenase in different unicelluar cyanobacteria. In: Photosynthesis Research for Food, Fuel and the Future: Proceeding of 15th International Congress on Photosynthesis, Beijing, 2010. Springer (in press, ISBN 978-3-642-32033-0)

  • Kobayashi M, Watanabe S, Gotoh T, Koizumi H, Itoh Y, Akiyama M, Shiraiwa Y, Tsuchiya T, Miyashita H, Mimuro M (2005) Minor but key chlorophylls in photosystem II. Photosynth Res 84:201–207

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602

    PubMed  CAS  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144:1200–1210

    PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA 101:3160–3165

    PubMed  CAS  Google Scholar 

  • Kräutler B (2011) A new factor in life’s quest for energy. Angew Chem Int Ed 50:2439–2441

    Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820

    PubMed  Google Scholar 

  • La Roche J, Van der Staay G, Partensky F, Ducret A, Aebersold R, Li R, Golden S, Hiller R, Wrench P, Larkum A (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248

    PubMed  Google Scholar 

  • Larkum AWD, Kühl M (2005) Chlorophyll d: the puzzle resolved. Trends Plant Sci 10:355–357

    PubMed  CAS  Google Scholar 

  • Larkum AWD, Chen M, Li Y, Schliep M, Trampe E, West J, Salih A, Kühl M (2012) A novel epiphytic chlorophyll d-containing cyanobacterium isolated from a mangrove-associated red alga. J Phycol 48:1320–1327

    Google Scholar 

  • Lewin RA, Withers NW (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256:735–737

    CAS  Google Scholar 

  • Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochim Biophys Acta 1817:1292–1298

    PubMed  CAS  Google Scholar 

  • Li Y, Larkum A, Schliep M, kuhl M, Neilan B, Chen M (2013) Newly isolated Chl d-containing cyanobacteria. In: Photosynthesis research for food, fuel and the future: Proceeding of 15th International Congress on Photosynthesis, Beijing, 2010. Springer (in press, ISBN 978-3-642-32033-0)

  • Lin Y, Crossett B, Chen M (2013) Effects of anaerobic conditions on photosynthetic units of Acaryochloris marina. In: photosynthesis research for food, fuel and the future: Proceeding of 15th International Congress on Photosynthesis, Beijing, China, 2010. Springer (in press, ISBN 978-3-642-32033-0)

  • López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X (2011) Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts. PLoS ONE 6:e23938

    PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140(2):315–322

    CAS  Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S, Mörschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–432

    PubMed  CAS  Google Scholar 

  • Marquardt J, Mörschel E, Rhiel E, Westermann M (2000) Ultrastructure of Acaryochloris marina, an oxyphotobacterium containing mainly chlorophyll d. Arch Microbiol 174:181–188

    PubMed  CAS  Google Scholar 

  • Martínez-García M, Koblížek M, López-Legentil S, Antón J (2011) Epibiosis of oxygenic phototrophs containing chlorophylls a, b, c, and d on the colonial ascidian Cystodytes dellechiajei. Microb Ecol 61:13–19

    PubMed  Google Scholar 

  • McNamara C, Perry TIV, Bearce K, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya Archaeological Site. Microb Ecol 51:51–64

    PubMed  Google Scholar 

  • Mielke S, Kiang N, Blankenship R, Gunner M, Mauzerall D (2011) Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. Biochim Biophys Acta 1807:1231–1236

    PubMed  CAS  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855

    PubMed  CAS  Google Scholar 

  • Miller SR, Wood AM, Blankenship RE, Kim M, Ferriera S (2011) Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche. Genome Biol Evol 3:601–613

    PubMed  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46

    PubMed  CAS  Google Scholar 

  • Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456:27–34

    PubMed  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M, Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556:95–98

    PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemot H, Chihara M, Miyach S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    CAS  Google Scholar 

  • Mohr R, Vosz B, Schliep M, Kurz T, Maldener I, Adams DG, Larkum ADW, Chen M, Hess WR (2010) A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris. ISME J 4:1456–1469

    PubMed  CAS  Google Scholar 

  • Mulo P, Sicora C, Aro E-M (2009) Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis. Cell Mol Life Sci 66:3697–3710

    PubMed  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633

    PubMed  CAS  Google Scholar 

  • Murata N, Wada H, Gombos Z (1992) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33:933–941

    CAS  Google Scholar 

  • Murray J (2012) Sequence variation at the oxygen-evolving centre of photosystem II: a new class of ‘rogue’ cyanobacterial D1 proteins. Photosynth Res 110:177–184

    PubMed  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    PubMed  CAS  Google Scholar 

  • Nieuwenburg P, Clarke RJ, Cai ZL, Chen M, Larkum AWD, Cabral NM, Ghiggino KP, Reimers JR (2003) Examination of the photophysical processes of chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina. Photochem Photobiol 77:628–637

    PubMed  CAS  Google Scholar 

  • Ohkubo S, Miyashita H (2012) Selective detection and phylogenetic diversity of Acaryochloris spp. That exist in association with didemnid ascidians and sponge. Microbes Environ 27:217–225

    PubMed  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    PubMed  CAS  Google Scholar 

  • Petrášek Z, Schmitt FJ, Theiss C, Huyer J, Chen M, Larkum A, Eichler HJ, Kemnitz K, Eckert HJ (2005) Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time-and wavelength-resolved fluorescence spectroscopy. Photochem Photobiol Sci 4:1016–1022

    PubMed  Google Scholar 

  • Pfreundt U, Stal LJ, Vos B, Hess WR (2012) Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium. ISME J 6:1367–1377

    PubMed  CAS  Google Scholar 

  • Porra RJ, Scheer H (2000) O-18 and mass spectrometry in chlorophyll research: derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthesis, degradation and adaptation. Photosynth Res 66:159–175

    PubMed  CAS  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Razeghifard MR, Chen M, Hughes JL, Freeman J, Krausz E, Wydrzynski T (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Biochemistry 44:11178–11187

    PubMed  CAS  Google Scholar 

  • Renger T, Schlodder E (2008) The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. J Phys Chem B 112:7351–7354

    PubMed  CAS  Google Scholar 

  • Rudiger W (2006) Biosynthesis of chlorophylls a and b: the last steps. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25. Springer, Dordrecht, pp 189–200

    Google Scholar 

  • Santabarbara S, Chen M, Larkum AWD, Evans MCW (2007) An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 581:1567–1571

    PubMed  CAS  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S, Dau H (1997) Light-harvesting in Acaryochloris marina–spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410:433–436

    PubMed  CAS  Google Scholar 

  • Schliep M, Crossett B, Willows RD, Chen M (2010) 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors. J Biol Chem 285:28450–28456

    PubMed  CAS  Google Scholar 

  • Schlodder E, Çetin M, Eckert HJ, Schmitt FJ, Barber J, Telfer A (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim Biophys Acta 1767:589–595

    PubMed  CAS  Google Scholar 

  • Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 8:3460–3466

    PubMed  CAS  Google Scholar 

  • Shpilyov AV, Zinchenko VV, Grimm B, Lokstein H (2013) Chlorophyll a phytylation is required for the stability of photosystems I and II in the cyanobacterium Synechocystis sp. PCC 6803. Plant J 73:336–346

    CAS  Google Scholar 

  • Sivakumar V, Wang RL, Hastings G (2003) Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Biophys J 85:3162–3172

    PubMed  CAS  Google Scholar 

  • Smith JAC, Benitez M (1955) Chlorophylls: analysis in plant materials. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol 4. Springer, Berlin, pp 142–196

    Google Scholar 

  • Swingley WD, Hohmann-Marriott MF, Le Olson T, Blankenship RE (2005) Effect of iron on growth and ultrastructure of Acaryochloris marina. Appl Environ Microbiol 71:8606–8610

    PubMed  CAS  Google Scholar 

  • Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010

    PubMed  CAS  Google Scholar 

  • Takaichi S, Mochimaru M (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci 64:2607–2619

    PubMed  CAS  Google Scholar 

  • Takaichi S, Mochimaru M, Uchida H, Murakami A, Hirose E, Maoka T, Tsuchiya T, Mimuro M (2012) Opposite chilarity of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus. Plant Cell Physiol 53:1881–1888

    PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723

    PubMed  CAS  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    PubMed  CAS  Google Scholar 

  • Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 283:18198–18209

    PubMed  CAS  Google Scholar 

  • Tomo T, Allakhverdiev SI, Mimuro M (2011) Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J Photochem Photobiol, B 104:333–340

    CAS  Google Scholar 

  • Tsuchiya T, Akimoto S, Mizoguchi T, Watabe K, Kindo H, Tomo T, Tamiaki H, Mimuro M (2012a) Artificially produced 7-formyl -chlorophyll d functions as an antenna pigment in the photosystem II isolated from the chlorophyllide a oxygenase-expressing Acaryochloris marina. Biochim Biophys Acta 1817:1285–1291

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Mizoguchi T, Akimoto S, Tomo T, Tamiaki H, Mimuro M (2012b) Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase Gene. Plant Cell Physiol 53:518–527

    PubMed  CAS  Google Scholar 

  • Tsukatani Y, Romberger SP, Golbeck JH, Bryant DA (2012) Isolation and characterization of homodimeric type-I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph. J Biol Chem 287:5720–5732

    Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473:55–60

    PubMed  CAS  Google Scholar 

  • van der Staay GW, Staehelin LA (1994) Biochemical characterization of protein composition and protein phosphorylation patterns in stacked and unstacked thylakoid membranes of the prochlorophyte Prochlorothrix hollandica. J Biol Chem 269:24834–24844

    PubMed  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S, Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893

    CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Smith KM, Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257:599–602

    PubMed  CAS  Google Scholar 

  • Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, Closs GL, Dutler H, Hannah J, Hauck FP (1990) The total synthesis of chlorophyll a. Tetrahedron 46:7599–7659

    CAS  Google Scholar 

  • Xu H, Vavilin D, Funk C, Vermaas W (2002) Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 49:149–160

    PubMed  CAS  Google Scholar 

  • Yaronskaya E, Grimm B (2006) The pathway from 5-aminolevulinic acid to protochlorophyllide and protoheme. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25. Springer, Dordrecht, pp 173–188

    Google Scholar 

  • Zapata M, Garrido JL, Jeffery SW (2006) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25. Springer, Dordrecht, pp 39–53

    Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MC holds Australia Research Council Future Fellowship. YL thanks Ms Yaqiong Li for her helps for 16 s rDNA sequence alignment and phylogentic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loughlin, P., Lin, Y. & Chen, M. Chlorophyll d and Acaryochloris marina: current status. Photosynth Res 116, 277–293 (2013). https://doi.org/10.1007/s11120-013-9829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9829-y

Keywords

Navigation