Skip to main content
Log in

Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Plants use light to fix carbon through the process of photosynthesis but light also causes photoinhibition, by damaging photosystem II (PSII). Plants can usually adjust their rate of PSII repair to equal the rate of damage, but under stress conditions or supersaturating light-intensities damage may exceed the rate of repair. Light-induced chloroplast movements are one of the many mechanisms plants have evolved to minimize photoinhibition. We found that chloroplast movements achieve a measure of photoprotection to PSII by altering the distribution of photoinhibition through depth in leaves. When chloroplasts are in the low-light accumulation arrangement a greater proportion of PSII damage occurs near the illuminated surface than for leaves where the chloroplasts are in the high-light avoidance arrangement. According to our findings chloroplast movements can increase the overall efficiency of leaf photosynthesis in at least two ways. The movements alter light profiles within leaves to maximize photosynthetic output and at the same time redistribute PSII damage throughout the leaf to reduce the amount of inhibition received by individual chloroplasts and prevent a decrease in photosynthetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Google Scholar 

  • Allen WA, Richardson AJ (1968) Interaction of light with a plant canopy. Journal Opt Soc Am 58:1023–1028

    Article  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993a) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, McCaffery S, Anderson JM (1993b) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843

    PubMed  CAS  Google Scholar 

  • Brown AM (2001) A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput Methods Program Biomed 65:191–200

    Article  CAS  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35

    Article  CAS  Google Scholar 

  • Davis PA, Caylor S, Whippo C, Hangarter RP (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environ 34:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • de Carbonnel M, Davis P, Roelfsema MRG, S-i Inoue, Schepens I, Lariguet P, Geisler M, K-i Shimazaki, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152:1391–1405

    Article  PubMed  Google Scholar 

  • Evans JR (2009) Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. Plant Cell Physiol 50:698–706

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, Vogelmann TC, Williams WE, Gorton HL (2004) Chloroplast to leaf. In: Smith WK, Voegelmann TC, Critchley C (eds) Ecological studies 178. Photosynthetic adaptation: chloroplast to landscape. Springer, Berlin, pp 15–41

  • Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocasia macrorrhiza. Physiol Plant 106:421–428

    Article  CAS  Google Scholar 

  • He J, Chow WS (2003) The rate coefficient of repair of photosystem II after photoinactivation. Physiol Plant 118:297–304

    Article  CAS  Google Scholar 

  • Inoue Y, Shibata K (1974) Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol 15:717–721

    Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  PubMed  CAS  Google Scholar 

  • Kato MC, Hikosaka K, Hirose T (2002) Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Funct Plant Biol 29:789–795

    Article  Google Scholar 

  • Kyle DJ, Ohad I, Arntzen CJ (1984) Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 81:4070–4074

    Article  PubMed  CAS  Google Scholar 

  • Lechowski Z (1974) Chloroplast arrangement as a factor of photosynthesis in multilayered leaves. Acta Soc Bot Pol 63:531–540

    Google Scholar 

  • Lee HY, Hong YN, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum; L. leaves. Planta 212:332–342

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Matsubara S, Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101:18234–18239

    Article  PubMed  CAS  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I (2000) Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ 23:235–250

    Article  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of Photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry (USA) 43:11321–11330

    Article  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  PubMed  CAS  Google Scholar 

  • Oguchi R, Douwstra P, Fujita T, Chow SW, Terashima I (2011) Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytol 191:146–159

    Article  PubMed  Google Scholar 

  • Ohad I, Berg A, Berkowicz SM, Kaplan A, Keren N (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol Plant 142:79–86

    Article  PubMed  CAS  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1995) Light inactivation of functional photosystem-II in leaves of peas grown in moderate light depends on photon exposure. Planta 196:401–411

    Article  CAS  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    PubMed  CAS  Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    Article  PubMed  CAS  Google Scholar 

  • Rokka A, Suorsa M, Saleem A, Battchikova N, Aro E-M (2005) Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J 388:159–168

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  PubMed  CAS  Google Scholar 

  • Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 Mutants of Arabidopsis thaliana. Plant Cell Physiol 47:391–400

    Article  PubMed  CAS  Google Scholar 

  • Sarvikas P, Tyystjarvi T, Tyystjarvi E (2010) Kinetics of prolonged photoinhibition revisited: photoinhibited photosystem II centres do not protect the active ones against loss of oxygen evolution. Photosynth Res 103:7–17

    Article  PubMed  CAS  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lageveranderung der Pflanzen-Chromatophoren. Engelmann, Stuttgart

    Google Scholar 

  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ (2003) FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. The Plant Cell Online 15:2152–2164

    Article  CAS  Google Scholar 

  • Suetsugu N, Kagawa T, Wada M (2005) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol 139:151–162

    Article  PubMed  CAS  Google Scholar 

  • Sztatelman O, Waloszek A, Katarzyna Banaś AK, Gabryś H (2010) Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study. J Plant Physiol 167:709–771

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Milward SE, Fan D-Y, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567

    Article  PubMed  CAS  Google Scholar 

  • Tyystjärvi E, Ali-Yrkkö K, Kettunen R, Aro E-M (1992) Slow degradation of the D1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition. Plant Physiol 100:1310–1317

    Article  PubMed  Google Scholar 

  • Vogelman TC, Nishio JN, Smith WK (1996) Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Article  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ, Aro E-M (1999) Co-translational assembly of the D1 protein into photosystem II. J Biol Chem 274:16062–16067

    Article  PubMed  CAS  Google Scholar 

  • Zurzycki J (1955) Chloroplasts arrangement as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63

    Google Scholar 

  • Zurzycki J (1961) The influence of chloroplast discplacements on the optical properties of leaves. Acta Soc Bot Pol 30:503–527

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation grants IBN-0080783 and MCB-0848083 to R.P.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip A. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, P.A., Hangarter, R.P. Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. Photosynth Res 112, 153–161 (2012). https://doi.org/10.1007/s11120-012-9755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9755-4

Keywords

Navigation