Skip to main content
Log in

Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the photochemical reflectance index (PRI) for assessing plant photosynthetic performance throughout the plant life cycle. The relationships between PRI, chlorophyll fluorescence parameters, and leaf pigment indices in Solanum melongena L. (aubergine; eggplant) were studied using photosynthetic induction curves both in short-term (diurnal) and long-term (seasonal) periods under different light intensities. We found good correlations between PRI/non-photochemical quenching (NPQ) and PRI/electron transport rate (ETR) in the short term at the same site of a single leaf but these relationships did not hold throughout the life of the plant. In general, changes in PRI owing to NPQ or ETR variations in the short term were <20 % of those that occurred with leaf aging. Results also showed that PRI was highly correlated to plant pigments, especially chlorophyll indices measured by spectral reflectance. Moreover, relationships of steady-state PRI/ETR and steady-state PRI/photochemical yield of photosystem II (ΦPSII) measured at uniform light intensity at different life stages proved that overall photosynthesis capacity and steady-state PRI were better correlated through chlorophyll content than NPQ and xanthophylls. The calibrated PRI index accommodated these pigments effects and gave better correlation with NPQ and ETR than PRI. Further studies of PRI indices based on pigments other than xanthophylls, and studies on PRI mechanisms in different species are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams WW, Demmig-Adams B (1994) Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol Plant 92:451–458

    Article  CAS  Google Scholar 

  • Barton CVM, North PRJ (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index—model and sensitivity analysis. Remote Sens Environ 78:264–273

    Article  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Bilger W, Bjorkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91:542–551

    Article  PubMed  CAS  Google Scholar 

  • Datt B (1999) Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. Int J Remote Sens 20:2741–2759

    Article  Google Scholar 

  • de Bianchi S, Ballottari M, Dall’Osto L, Bassi R (2010) Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem Soc Trans 38:651–660

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to light stress. Annu Rev Plant Physiol Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Filella I, Amaro T, Araus JL, Penuelas J (1996) Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiol Plant 96:211–216

    Article  CAS  Google Scholar 

  • Filella I, Penuelas J, Llorens L, Estiarte M (2004) Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens Environ 90:308–318

    Article  Google Scholar 

  • Filella I, Porcar-Castell A, Munne-Bosch S, Back J, Garbulsky MF, Penuelas J (2009) PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int J Remote Sens 30:4443–4455

    Article  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Gamon JA, Field CB, Bilger W, Bjorkman O, Fredeen AL, Penuelas J (1990) Remote-sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7

    Article  Google Scholar 

  • Gamon JA, Penuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44

    Article  Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

    Article  Google Scholar 

  • Gamon JA, Field CB, Fredeen AL, Thayer S (2001) Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynth Res 67:113–125

    Article  PubMed  CAS  Google Scholar 

  • Garbulsky MF, Peñuelas J, Gamon J, Inoue Y, Filella I (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies—a review and meta-analysis. Remote Sens Environ 115:281–297

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990:87–92

    Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L and Acer platanoides L leaves—spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292

    Article  CAS  Google Scholar 

  • Gitelson AA, Merzlyak MN (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol 148:494–500

    Article  CAS  Google Scholar 

  • Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18:2691–2697

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN, Lichtenthaler HK (1996) Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J Plant Physiol 148:501–508

    Article  CAS  Google Scholar 

  • Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74:38–45

    Article  PubMed  CAS  Google Scholar 

  • Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281

    Article  PubMed  CAS  Google Scholar 

  • Gitelson AA, Keydan GP, Merzlyak MN (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett 33:L11402. doi:10.1029/2006GL026457

    Article  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

  • Guo JM, Trotter CM (2004) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Funct Plant Biol 31:255–265

    Article  CAS  Google Scholar 

  • Hernández-Clemente R, Navarro-Cerrillo RM, Suárez L, Morales F, Zarco-Tejada PJ (2011) Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens Environ 115:2360–2375

    Article  Google Scholar 

  • Jones H, Vaughan R (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, New York

    Google Scholar 

  • Koneshi A, Munehiro M, Omasa K (2008) Spatiotemporal changes in PRI and NPQ under different light intensity gradients on leaf surfaces. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht, pp 627–630

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–249

    Google Scholar 

  • Malenovský Z, Mishra KB, Zemek F, Rascher U, Nedbal L (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60(11):2987–3004

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Google Scholar 

  • Methy M (2000) Analysis of photosynthetic activity at the leaf and canopy levels from reflectance measurements: a case study. Photosynthetica 38:505–512

    Article  CAS  Google Scholar 

  • Nakaji T, Oguma H, Fujinuma Y (2006) Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. Int J Remote Sens 27:493–509

    Article  Google Scholar 

  • Nichol CJ, Lloyd J, Shibistova O, Arneth A, Roser C, Knohl A, Matsubara S, Grace J (2002) Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus B 54:677–687

    Article  Google Scholar 

  • Nichol CJ, Rascher U, Matsubara S, Osmond B (2006) Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence. Trees 20:9–15

    Article  CAS  Google Scholar 

  • Omasa K (1998) Image instrumentation of chlorophyll a fluorescence. SPIE 3382:91–99

    Article  CAS  Google Scholar 

  • Omasa K (2011) Fluorescence imaging of photosynthetic performance. In PrometheusWiki. CSIRO Publishing http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Fluorescence+imaging+of+photosynthetic+performance. Accessed 24 May 2012

  • Omasa K, Takayama K (2003) Simultaneous measurements of stomatal conductance, non-photochemical quenching and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. Plant Cell Physiol 44:1290–1300

    Article  PubMed  CAS  Google Scholar 

  • Omasa K, Hosoi F, Konishi A (2007) 3D lidar imaging for detecting and understanding plant responses and canopy structure. J Exp Bot 58:881–898

    Article  PubMed  CAS  Google Scholar 

  • Pearcy RW, Chazdon RL, Gross LJ, Mott KA (1994) Photosynthetic utilization of sunflecks: a temporally patchy resource on a timescale of seconds to minutes. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 175–208

    Google Scholar 

  • Penuelas J, Inoue Y (2000) Reflectance assessment of canopy CO2 uptake. Int J Remote Sens 21:3353–3356

    Article  Google Scholar 

  • Penuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296

    Article  Google Scholar 

  • Penuelas J, Garbulsky MF, Filella I (2011) Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New Phytol 191:596–599

    Article  PubMed  CAS  Google Scholar 

  • Pieruschka R, Klimov D, Kolber ZS, Berry JA (2010) Monitoring of cold and light stress impact on photosynthesis by using the laser induced fluorescence transient (LIFT) approach. Funct Plant Biol 37:395–402

    Article  Google Scholar 

  • Rahman AF, Gamon JA, Fuentes DA, Roberts DA, Prentiss D (2001) Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. J Geophys Res 106:33579–33591

    Article  Google Scholar 

  • Rahman AF, Cordova VD, Gamon JA, Schmid HP, Sims DA (2004) Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: a novel approach. Geophys Res Lett 31:L10503. doi:10.1029/2004GL019778

    Article  Google Scholar 

  • Richardson AD, Berlyn GP (2002) Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Ermont, USA. Am J Bot 89:88–94

    Article  PubMed  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Stylinski CD, Gamon JA, Oechel WC (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366–374

    Article  Google Scholar 

  • Suárez L, Zarco-Tejada PJ, Berni JAJ, González-Dugo V, Fereres E (2009) Modelling PRI for water stress detection using radiative transfer models. Remote Sens Environ 113(4):730–744

    Article  Google Scholar 

  • Trotter GM, Whitehead D, Pinkney EJ (2002) The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents. Int J Remote Sens 23:1207–1212

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Professor C. Barry Osmond, the University of Wollongong, Australia for his helpful discussion and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Omasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimzadeh-Bajgiran, P., Munehiro, M. & Omasa, K. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynth Res 113, 261–271 (2012). https://doi.org/10.1007/s11120-012-9747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9747-4

Keywords

Navigation