Skip to main content

Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity

Abstract

In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m2 and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AFM:

Atomic force microscopy

β-OG:

n-octyl β-d-glucopyranoside

DOC:

Deoxycholate

CM:

Cytoplasmic membrane

COGs:

Clusters of orthologous groups

ICM:

Intracytoplasmic membrane

LH:

Light harvesting

LH1:

Core pigment-protein light-harvesting complex

LH2:

Peripheral pigment-protein light-harvesting complex

RC:

Photochemical reaction center

UPB:

Upper pigmented band

References

  • Bahatyrova S, Frese RN, Siebert CA, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Olsen JD, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062

    PubMed  Article  CAS  Google Scholar 

  • Bissig I, Brunisholz RA, Suter F, Cogdell RJ, Zuber H (1988) The complete amino acid sequences of the B800-850 antenna polypeptides from Rhodopseudomonas acidophila strain 7750. Z Naturforsch C 43:77–83

    PubMed  CAS  Google Scholar 

  • Braatsch S, Gomelsky M, Kuphal S, Klug G (2002) A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Mol Microbiol 45:827–836

    PubMed  Article  CAS  Google Scholar 

  • Broglie RM, Hunter CN, Delepelaire P, Niederman RA, Chua N-H, Clayton RK (1980) Isolation and characterization of pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 77:87–91

    PubMed  Article  CAS  Google Scholar 

  • Brotosudarmo THP, Kunz R, Böhm P, Gardiner AT, Moulisova V, Cogdell RJ, Köhler J (2009) Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6 have a heterogeneous polypeptide composition. Biophys J 97:1491–1500

    PubMed  Article  CAS  Google Scholar 

  • Cohen-Bazire G, Sistrom WR, Stanier RY (1956) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68

    Article  Google Scholar 

  • D’Amici GM, Rinalducci S, Murgiano L, Italiano F, Zolla L (2010) Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods. J Proteomic Res 9:192–203

    Article  Google Scholar 

  • Evans MB, Hawthornthwaite AM, Cogdell RJ (1990) Isolation and characterization of the different B800-850 light-harvesting complexes from low-light and high-light grown cells of Rhodopseudomonas palustris, strain 2.1.6. Biochim Biophys Acta 1016:71–76

    Article  CAS  Google Scholar 

  • Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM, Papiz MZ (2005) A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth Res 85:169–180

    PubMed  Article  CAS  Google Scholar 

  • Fowler GJ, Visschers RW, Grief GG, van Grondelle R, Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355:848–850

    PubMed  Article  CAS  Google Scholar 

  • Gall A, Robert B (1999) Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris. Biochemistry 38:5185–5190

    PubMed  Article  CAS  Google Scholar 

  • Gardiner AT, Takaichi S, Cogdell RJ (1993) The effect of changes in light intensity and temperature on the peripheral antenna of Rhodopseudomonas acidophila. Biochem Soc Trans 21:6S

    PubMed  CAS  Google Scholar 

  • Gardiner AT, Mackenzie RC, Barrett SJ, Kaiser K, Cogdell RJ (1996) The purple photosynthetic bacterium Rhodopseudomonas acidophila contains multiple puc peripheral antenna complex (LH2) genes: cloning and initial characterisation of four α/β pairs. Photosynth Res 49:223–235

    Article  CAS  Google Scholar 

  • Gibson LC, McGlynn P, Chaudhri M, Hunter CN (1992) A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding HemF and the puc operon. Mol Microbiol 6:3171–3186

    PubMed  Article  CAS  Google Scholar 

  • Giraud E, Zappa S, Vuillet L, Adriano JM, Hannibal L, Fardoux J, Berthomieu C, Bouyer P, Pignol D, Verméglio A (2005) A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. J Biol Chem 280:32389–32397

    PubMed  Article  CAS  Google Scholar 

  • Hartigan N, Tharia HA, Sweeney F, Lawless AM, Papiz MZ (2002) The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J 82:963–977

    PubMed  Article  CAS  Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D, Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 27:3459–3467

    Article  CAS  Google Scholar 

  • Hunter CN, Tucker JD, Niederman RA (2005) The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochem Photobiol Sci 4:1023–1027

    PubMed  Article  CAS  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) (2009) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Kiley PJ, Kaplan S (1987) Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides light-harvesting B800-850-α and B800-850-β genes. J Bacteriol 169:3268–3275

    PubMed  CAS  Google Scholar 

  • Kiley PJ, Varga A, Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170:1103–1115

    PubMed  CAS  Google Scholar 

  • Koblízek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231

    PubMed  Article  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4:581–597

    PubMed  Article  CAS  Google Scholar 

  • Lee JK, Kiley PJ, Kaplan S (1989) Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides. J Bacteriol 171:3391–3405

    PubMed  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    PubMed  Article  CAS  Google Scholar 

  • Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosler JP, Newman JE, Shapleigh JP, Sockett RE, Zeilstra-Ryalls J, Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70:19–41

    PubMed  Article  CAS  Google Scholar 

  • Mascle-Allemand C, Duquesne K, Lebrun R, Scheuring S, Sturgis JN (2010) Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum. Proc Natl Acad Sci USA 107:5357–5362

    PubMed  Article  CAS  Google Scholar 

  • Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–623

    PubMed  Article  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ, Isaacs NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40:8783–8789

    PubMed  Article  CAS  Google Scholar 

  • Moulisová V, Luer L, Hoseinkhani S, Brotosudarmo THP, Collins AM, Lanzanik G, Blankenship RE, Cogdell RJ (2009) Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris. Biophys J 97:3019–3028

    PubMed  Article  Google Scholar 

  • Niederman RA, Mallon DE, Langan JJ (1976) Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions. Biochim Biophys Acta 440:429–447

    PubMed  Article  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800-850 LH2 complex from Rhodopseuodomonas acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538

    PubMed  Article  CAS  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    PubMed  Article  Google Scholar 

  • Scheuring S, Gonçalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358:83–96

    PubMed  Article  CAS  Google Scholar 

  • Sleat DE, Ding L, Wang S, Zhao C, Wang Y, Xin W, Zheng H, Moore DF, Sims KB, Lobel P (2009) Mass spectrometry-based protein profiling to determine the cause of lysosomal storage diseases of unknown etiology. Mol Cell Proteomics 8:1708–1718

    PubMed  Article  CAS  Google Scholar 

  • Sturgis JN, Hunter CN, Niederman RA (1988) Spectra and extinction coefficients of near-infrared absorption bands in membranes of Rhodobacter sphaeroides mutants lacking light-harvesting and reaction center complexes. Photochem Photobiol 48:243–247

    Article  CAS  Google Scholar 

  • Sturgis JN, Tucker JD, Olsen JD, Hunter CN, Niederman RA (2009) Atomic force microscopy studies of native photosynthetic membranes. Biochemistry 48:3679–3698

    PubMed  Article  CAS  Google Scholar 

  • Tadros MH, Waterkamp K (1989) Multiple copies of the coding regions for the light-harvesting B800–850 α- and β-polypeptides are present in the Rhodopseudomonas palustris genome. EMBO J 8:1303–1308

    PubMed  CAS  Google Scholar 

  • Tadros MH, Katsiou E, Hoon MA, Yurkova N, Ramji DP (1993) Cloning of a new antenna gene cluster and expression analysis of the antenna gene family of Rhodopseudomonas palustris. Eur J Biochem 217:867–875

    PubMed  Article  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    PubMed  Article  CAS  Google Scholar 

  • Tharia HA, Nightingale TD, Papiz MZ, Lawless AM (1999) Characterisation of hydrophobic peptides by RP-HPLC from different spectral forms of LH2 isolated from Rps. palustris. Photosynth Res 61:157–167

    Article  CAS  Google Scholar 

  • Theiler R, Suter F, Zuber H, Cogdell RJ (1984) A comparison of the primary structures of the two B800-850 apoproteins from wild-type Rhodopseudomonas sphaeroides strain 2.4.1 and a carotenoidless mutant strain R26.1. FEBS Lett 175:231–237

    Article  CAS  Google Scholar 

  • Theiler R, Suter F, Pennoyer JD, Zuber H, Niederman RA (1985) Complete amino acid sequence of the B875 light-harvesting protein of Rhodopseudomonas sphaeroides strain 2.4.1. Comparison with R26.1 carotenoidless-mutant strain. FEBS Lett 184:231–236

    PubMed  Article  CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA, Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282:833–845

    PubMed  Article  CAS  Google Scholar 

  • Wang W, Hu Z, Li J, Chen G (2009) Expression, characterization and actual function of the second pucBA in Rhodobacter sphaeroides. Biosci Rep 29:165–172

    PubMed  Article  Google Scholar 

  • Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225

    PubMed  Article  CAS  Google Scholar 

  • Woronowicz K, Niederman RA (2010) Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity. Adv Exp Med Biol 675:161–178

    PubMed  Article  CAS  Google Scholar 

  • Woronowicz K, Sha D, Frese RN, Niederman RA (2011) The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. Biochemistry 50:4819–4829

    PubMed  Article  CAS  Google Scholar 

  • Zeng X, Kaplan S (2001) TspO as a modulator of the repressor/antirepressor (PpsR/AppA) regulatory system in Rhodobacter sphaeroides 2.4.1. J Bacteriol 183:6355–6364

    PubMed  Article  CAS  Google Scholar 

  • Zeng X, Choudhary M, Kaplan S (2003) A second and unusual pucBA operon of Rhodobacter sphaeroides 2.4.1: Genetics and function of the encoded polypeptides. J Bacteriol 185:6171–6184

    PubMed  Article  CAS  Google Scholar 

  • Zeng X, Roh JH, Callister SJ, Tavano CL, Donohue TJ, Lipton MS, Kaplan S (2007) Proteomic characterization of the Rhodobacter sphaeroides 2.4.1 photosynthetic membrane: Identification of new proteins. J Bacteriol 189:7464–7474

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Peter Lobel and Dr. Haiyan Zheng of the Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, for conducting the proteomics analysis. This work was supported by the Aresty Research Center for Undergraduates at Rutgers University (OBO, HCS, JTL) and U. S. Department of Energy Grant No. DE-FG02-08ER15957 from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science (RAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Niederman.

Additional information

This is a re-publication of the original article in the September 2011 issue of this journal. When referring to this article in future publications, please cite the original article, as follows: Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA (2011) Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. Photosynth Res 108(2–3):201–214. doi: 10.1007/s11120-011-9681-x

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woronowicz, K., Olubanjo, O.B., Sung, H.C. et al. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. Photosynth Res 111, 125–138 (2012). https://doi.org/10.1007/s11120-011-9707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9707-4

Keywords

  • Light-harvesting complexes
  • Light regulation
  • puc operon
  • Proteomics
  • Rhodobacter sphaeroides