Skip to main content
Log in

Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The core light-harvesting complex (LH1) of purple sulfur photosynthetic bacterium Thermochromatium tepidum exhibits an unusual absorption maximum at 915 nm for the Q y transition, and is highly stable when copurified with reaction center (RC) in a LH1–RC complex form. In previous studies, we demonstrated that the calcium ions are involved in both the large red shift and the enhanced thermal stability, and possible Ca2+-binding sites were proposed. In this study, we further examine the putative binding sites in the LH1 polypeptides using purified chromatophores. Incubation of the chromatophores in the presence of EDTA revealed no substantial change in the absorption maximum of LH1 Q y transition, whereas further addition of detergents to the chromatophores-EDTA solution resulted in a blue-shift for the LH1 Q y peak with the final position at 892 nm. The change of the LH1 Q y peak to shorter wavelengths was relatively slow compared to that of the purified LH1–RC complex. The blue-shifted LH1 Q y transition in chromatophores can be restored to its original position by addition of Ca2+ ions. The results suggest that the Ca2+-binding site is exposed on the inner surface of chromatophores, corresponding to the C-terminal region of LH1. An Asp-rich fragment in the LH1 α-polypeptide is considered to form a crucial part of the binding network. The slow response of LH1 Q y transition upon exposure to EDTA is discussed in terms of the membrane environment in the chromatophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

EDTA:

ethylenediamine tetraacetic acid

DDM:

n-dodecyl β-D-maltopyranoside

LDAO:

lauryl dimethylamine N-oxide

LH:

light-harvesting

RC:

reaction center

References

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Bergantino E, Dainese P, Cerovic Z, Sechi S, Bassi R (1995) A post-translational modification of the photosystem II subunit CP29 protects maize from cold stress. J Biol Chem 270:8474–8481

    Article  CAS  PubMed  Google Scholar 

  • Garcia D, Parot P, Vermeglio A, Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. Biochim Biophys Acta 850:390–395

    Article  CAS  Google Scholar 

  • Han K-C, Katoh S (1993) Different localization of two Ca2+ in spinach oxygen-evolving photosystem II membranes. Evidence for involvement of only one Ca2+ in oxygen evolution. Plant Cell Physiol 34:585–593

    CAS  Google Scholar 

  • Jegerschöld C, Rutherford AW, Mattioli TA, Crimi M, Bassi R (2000) Calcium binding to the photosystem II subunit CP29. J Biol Chem 275:12781–12788

    Article  PubMed  Google Scholar 

  • Kimura Y, Hirano Y, Yu L-J, Suzuki H, Kobayashi M, Wang Z-Y (2008) Calcium ions are involved in the unusual red shift of the light-harvesting 1 Q y transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem 283:13867–13873

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Yu L-J, Hirano Y, Suzuki H, Wang Z-Y (2009) Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem 284:93–99

    Article  CAS  PubMed  Google Scholar 

  • Lommen MAJ, Takemoto J (1978) Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides. J Bacteriol 136:730–741

    CAS  PubMed  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic bacterium isolated from a Yellowstone hot spring. Science 225:313–315

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Nishimura M (1977) Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 459:483–491

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Fukuda T, Hatano M, Madigan MT (1986) Organization of intracytoplasmic membranes in a novel thermophilic purple photosynthetic bacterium as revealed by absorption, circular dichroism and emission spectra. Biochim Biophys Acta 852:191–197

    Article  CAS  Google Scholar 

  • Nozawa T, Ohta M, Hatano M, Madigan MT (1991) Phosphorylation and dephosphorylation reactions in chromatophores of Chromatium vinosum and Chromatium tepidum. Biochim Biophys Acta 1060:189–195

    Article  CAS  Google Scholar 

  • Oelze J (1978) Proteins exposed at the surface of chromatophores of Rhodospirillum rubrum. Biochim Biophys Acta 509:450–461

    Article  CAS  PubMed  Google Scholar 

  • Oelze J, Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265:209–239

    CAS  PubMed  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366:301–316

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Seguin J, Marco S, Levy D, Robert B, Rigaud J-L (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Natl Acad Sci USA 100:1690–1693

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Rigaud J-L, Sturgis JN (2004) Variable LH2 stoichiometry and core clustering in native membrane of Rhodospirillum photometricum. EMBO J 23:4127–4133

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Gonçalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structure and organization. J Mol Biol 358:83–96

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi M, Miki K, Wang Z-Y (2007) Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim Biophys Acta 1767:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Tadros MH, Frank R, Dörge B, Gad’on N, Takemoto JY, Drews G (1987) Orientation of the B800–850, B870, and reaction center polypeptides on the cytoplasmic and periplasmic surfaces of Rhodobacter capsulatus membranes. Biochemistry 26:7680–7687

    Article  CAS  Google Scholar 

  • Tadros MH, Frank R, Takemoto JY, Drews G (1988) Localization of reaction center and B800–850 antenna pigment proteins in membranes of Rhodobacter sphaeroides. J Bacteriol 170:2758–2762

    CAS  PubMed  Google Scholar 

  • Takemoto J, Bachmann RC (1979) Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities. Arch Biochem Biophys 195:526–534

    Article  CAS  PubMed  Google Scholar 

  • Takemoto JY, Peterson RL, Tadros MH, Drews G (1987) Transverse membrane topography of the B875 light-harvesting polypeptides of wild-type Rhodobacter sphaeroides. J Bacteriol 169:4731–4736

    CAS  PubMed  Google Scholar 

  • Umetsu M, Wang Z-Y, Kobayashi M, Nozawa T (1999) Interaction of photosynthetic pigments with various organic solvents. Magnetic circular dichroism approach and application to chlorosomes. Biochim Biophys Acta 1410:19–31

    Article  CAS  PubMed  Google Scholar 

  • Umetsu M, Wang Z-Y, Yoza K, Kobayashi M, Nozawa T (2000) Interaction of photosynthetic pigments with various organic solvents 2. Application of magnetic circular dichroism to bacteriochlorophyll a and light-harvesting complex 1. Biochim Biophys Acta 1457:106–117

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-Y, Kudoh M, Ohama Y, Nakatani H, Kobayashi M, Nozawa T (1997) Size distribution and photophosphorylation of chromatophores from Rhodospirillum rubrum. Photosynth Res 51:51–59

    Article  CAS  Google Scholar 

  • Wang Z-Y, Shimonaga M, Suzuki H, Kobayashi M, Nozawa T (2003) Purification and characterization of the polypeptides of core light-harvesting complexes from purple sulfur bacteria. Photosynth Res 78:133–141

    Article  CAS  PubMed  Google Scholar 

  • Webber AN, Gray JC (1989) Detection of calcium binding by photosystem II polypeptides immobilised onto nitrocellulose membrane. FEBS Lett 249:79–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants-in-aid for Scientific Research on Priority Areas “Structures of Biological Macromolecular Assemblies” from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by The Kurata Memorial Hitachi Science and Technology Foundation. We thank Kao Corporation for kindly providing the LDAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 131 kb)

Supplementary material 2 (EPS 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, LJ., Kato, S. & Wang, ZY. Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum . Photosynth Res 106, 215–220 (2010). https://doi.org/10.1007/s11120-010-9596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9596-y

Keywords

Navigation