Advertisement

Photosynthesis Research

, Volume 107, Issue 1, pp 59–69 | Cite as

The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers

  • J. P. Allen
  • J. C. Williams
Review

Abstract

In photosynthetic organisms, such as purple bacteria, cyanobacteria, and plants, light is captured and converted into energy to create energy-rich compounds. The primary process of energy conversion involves the transfer of electrons from an excited donor molecule to a series of electron acceptors in pigment–protein complexes. Two of these complexes, the bacterial reaction center and photosystem II, are evolutionarily related and structurally similar. However, only photosystem II is capable of performing the unique reaction of water oxidation. An understanding of the evolutionary process that lead to the development of oxygenic photosynthesis can be found by comparison of these two complexes. In this review, we summarize how insight is being gained by examination of the differences in critical functional properties of these complexes and by experimental efforts to alter pigment–protein interactions of the bacterial reaction center in order to enable it to perform reactions, such as amino acid and metal oxidation, observable in photosystem II.

Keywords

Photosynthesis Evolution Reaction center Tyrosine oxidation Manganese Oxygen-evolving complex Rhodobacter sphaeroides Purple bacteria 

Abbreviations

BChl

Bacteriochlorophyll monomer

Chl

Chlorophyll

P865

Special pair of bacteriochlorophylls, primary electron donor of reaction centers

P680

Primary electron donor of photosystem II

YZ

Redox active tyrosine residue of photosystem II, secondary electron donor to P680+

Notes

Acknowledgment

The work described in this publication is supported by a grant from the NSF (MCB 0640002).

References

  1. Allen JP, Williams JC (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers. J Bioenerg Biomembr 27:275–283CrossRefPubMedGoogle Scholar
  2. Allen JP, Fever G, Yeates TO, Komiya H, Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734CrossRefPubMedGoogle Scholar
  3. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84:6162–6166CrossRefPubMedGoogle Scholar
  4. Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D, Mattioli TA, Fetsch A, Kuhn M, Lubitz W (1996) Effects of hydrogen bonding to a bacteriochlorophyll–bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 35:6612–6619CrossRefPubMedGoogle Scholar
  5. Ananyev GM, Zaltsman L, Vasko C, Dismukes GC (2001) The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. Biochim Biophys Acta 1503:52–68CrossRefPubMedGoogle Scholar
  6. Armstrong FA (2008) Why did nature choose manganese to make oxygen? Phil Trans R Soc Lond B 363:1263–1270CrossRefGoogle Scholar
  7. Barter LMC, Durrant JR, Klug DR (2003) A quantitative structure–function relationship for the photosystem II reaction center: supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 100:946–951CrossRefPubMedGoogle Scholar
  8. Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ, Whittaker JW (2001) Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9:725–738CrossRefPubMedGoogle Scholar
  9. Bjorn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) A viewpoint: why chlorophyll a? Photosynth Res 99:95–98CrossRefGoogle Scholar
  10. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biol Sci 23:94–97CrossRefGoogle Scholar
  11. Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J (2004) Recent pulsed EPR studies of the photosystem II oxygen-evolving complex: implications as to water oxidation mechanisms. Biochim Biophys Acta 1655:158–171CrossRefPubMedGoogle Scholar
  12. Brudvig GW (2008) Water oxidation chemistry of photosystem II. Phil Trans R Soc Lond B 363:1211–1219CrossRefGoogle Scholar
  13. Bylina EJ, Youvan DC (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci USA 85:7226–7230CrossRefPubMedGoogle Scholar
  14. Camara-Artigas A, Magee C, Goetsch A, Allen JP (2002) The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 angstrom resolution. Photosynth Res 74:87–93CrossRefPubMedGoogle Scholar
  15. Debus RJ, Feher G, Okamura MY (1985) LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry 24:2488–2500CrossRefGoogle Scholar
  16. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624CrossRefGoogle Scholar
  17. Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246:429–457CrossRefPubMedGoogle Scholar
  18. Dekker JP, van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–2008CrossRefPubMedGoogle Scholar
  19. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175CrossRefPubMedGoogle Scholar
  20. Eaton-Rye JJ, Putnam-Evans C (2005) Distal and extrinsic photosystem II antennas. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water plastoquinone oxidoreductase. Springer Dordrecht, The Netherlands, pp 45–70Google Scholar
  21. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838CrossRefPubMedGoogle Scholar
  22. Green BR, Gantt E (2005) Distal and extrinsic photosystem II antennas. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water plastoquinone oxidoreductase. Springer Dordrecht, The Netherlands, pp 23–44Google Scholar
  23. Grimm B, Porra RJ, Rudiger W, Scheer H (eds) (2006) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions, and applications. Springer, Dordrecht, The NetherlandsGoogle Scholar
  24. Haffa ALM, Lin S, Katilius E, Williams JC, Taguchi AKW, Allen JP, Woodbury NW (2002) The dependence of the initial electron transfer rate on driving force in Rhodobacter sphaeroides reaction centers. J Phys Chem B 106:7376–7384CrossRefGoogle Scholar
  25. Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956CrossRefPubMedGoogle Scholar
  26. Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) (2009) The purple phototrophic bacteria. Springer Dordrecht, HeidelbergGoogle Scholar
  27. Johnson ET, Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41:6483–6494CrossRefPubMedGoogle Scholar
  28. Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW (2002) Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B 106:11859–11869CrossRefGoogle Scholar
  29. Kálmán L, LoBrutto R, Allen JP, Williams JP (1999) Modified reaction centres oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699CrossRefGoogle Scholar
  30. Kálmán L, Williams JC, Allen JP (2003a) Proton release upon oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. FEBS Lett 545:193–198CrossRefPubMedGoogle Scholar
  31. Kálmán L, LoBrutto R, Narváez AJ, Williams JC, Allen JP (2003b) Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Biochemistry 42:13280–13286CrossRefPubMedGoogle Scholar
  32. Kálmán L, Narváez AJ, LoBrutto R, Williams JC, Allen JP (2004) Dependence of tyrosine oxidation in highly oxidizing bacterial reaction centers on pH and free-energy difference. Biochemistry 43:12905–12912CrossRefPubMedGoogle Scholar
  33. Kálmán L, Williams JC, Allen JP (2005) Mimicking the properties of the oxygen-evolving complex in purple bacterial reaction centers. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water plastoquinone oxidoreductase. Springer Dordrecht, The Netherlands, pp 715–727Google Scholar
  34. Kálmán L, Flores M, Williams JC, Allen JP (2009) Electronic structure of Fe3+ at a metal binding site introduced in modified bacterial reaction centers. Appl Magn Res 37:27–33CrossRefGoogle Scholar
  35. Kirmaier C, Holten D, Parson WW (1985a) Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810:33–48CrossRefGoogle Scholar
  36. Kirmaier C, Holten D, Parson WW (1985b) Picosecond photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K: effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810:49–61CrossRefGoogle Scholar
  37. Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porna RJ, Rudinger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions, and applications. Springer Verlag, The Netherlands, pp 261–282Google Scholar
  38. Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bonigk B, Mobius K, Lubitz W, Feher G (1993) The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R-26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers. Biochim Biophys Acta 1183:139–160CrossRefGoogle Scholar
  39. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269CrossRefPubMedGoogle Scholar
  40. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044CrossRefPubMedGoogle Scholar
  41. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322Google Scholar
  42. Mimuro M, Tomo T, Tsuchiya T (2008) Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis. Photosynth Res 97:167–176CrossRefPubMedGoogle Scholar
  43. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402CrossRefGoogle Scholar
  44. Moser CC, Keske JM, Warnke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802CrossRefPubMedGoogle Scholar
  45. Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W (2002) Pigment–protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B 106:3226–3236CrossRefGoogle Scholar
  46. Narváez AJ, Kálmán L, LoBrutto R, Allen JP, Williams JC (2002) Influence of the protein environment on the properties of a tyrosyl radical in reaction centers from Rhodobacter sphaeroides. Biochemistry 41:15253–15258CrossRefPubMedGoogle Scholar
  47. Narváez AJ, LoBrutto R, Allen JP, Williams JC (2004) Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Biochemistry 43:14379–14384CrossRefPubMedGoogle Scholar
  48. Nixon PJ, Sarcina M, Diner BA (2005) Distal and extrinsic photosystem II antennas. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water plastoquinone oxidoreductase. Springer Publishers, The Netherlands, pp 71–94Google Scholar
  49. Olson JM, Pierson BK (1987) Origin and evolution of photosynthetic reaction centers. Orig Life 17:419–430CrossRefGoogle Scholar
  50. Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527CrossRefPubMedGoogle Scholar
  51. Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007CrossRefPubMedGoogle Scholar
  52. Sauer K, Yachandra VK (2002) A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad USA 99:8631–8636CrossRefGoogle Scholar
  53. Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca RatonGoogle Scholar
  54. Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762CrossRefPubMedGoogle Scholar
  55. Swingley WD, Blankenship RE, Raymond J (2009) Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Verlag Publishers, Dordrecht, The Netherlands, pp 17–29CrossRefGoogle Scholar
  56. Thielges M, Uyeda G, Camara-Artigas A, Kálmán L, Williams JC, Allen JP (2005) Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Biochemistry 44:7389–7394CrossRefPubMedGoogle Scholar
  57. Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458:199–219CrossRefPubMedGoogle Scholar
  58. Wang H, Lin S, Allen JP, Williams JC, Blankert S, Laser C, Woodbury NW (2007) Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science 316:747–750CrossRefPubMedGoogle Scholar
  59. Wang H, Lin S, Katilius E, Laser C, Allen JP, Williams JC, Woodbury NW (2009) Unusual temperature dependence of photosynthetic electron transfer due to protein dynamics. J Phys Chem B 113:818–824CrossRefPubMedGoogle Scholar
  60. Watanabe T, Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 287–316Google Scholar
  61. Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:15403–15407CrossRefPubMedGoogle Scholar
  62. Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II: the light-induced water: plastoquinone oxidoreductase. Springer-Verlag Publishers, Dordrecht, the NetherlandsGoogle Scholar
  63. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1729CrossRefPubMedGoogle Scholar
  64. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825CrossRefPubMedGoogle Scholar
  65. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations