Photosynthesis Research

, Volume 104, Issue 2–3, pp 137–152 | Cite as

Comparative genomics of green sulfur bacteria

  • Colin Davenport
  • David W. Ussery
  • Burkhard Tümmler
Regular Paper

Abstract

Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO2 fixation. Whole-genome gene family and single gene sequence comparisons yielded similar phylogenetic trees of the sequenced chromosomes indicating a concerted vertical evolution of large gene sets. Chromosomal synteny of genes is not preserved in the phylum Chlorobi. The accessory genome is characterized by anomalous oligonucleotide usage and endows the strains with individual features for transport, secretion, cell wall, extracellular constituents, and a few elements of the biosynthetic apparatus. Giant genes are a peculiar feature of the genera Chlorobium and Prosthecochloris. The predicted proteins have a huge molecular weight of 106, and are probably instrumental for the bacteria to generate their own intimate (micro)environment.

Keywords

Comparative genomics Chlorobaculum Chlorobium Genome atlas Oligonucleotide usage 

Abbreviations

Bchl

Bacteriochlorophyll

Chl

Chlorophyll

CRISPRs

Clustered regularly interspaced short palindromic repeats

FMO protein

Fenna–Matthews–Olson protein

GRV

Global relative variance

GSB

Green sulfur bacteria

LCB

Locally collinear block

OU

Oligonucleotide usage

RV

Relative variance

TCA

Tricarboxylic acid

Supplementary material

11120_2009_9515_MOESM1_ESM.pdf (4.9 mb)
Supplementary material 1 (PDF 4998 kb)

References

  1. Alexander B, Andersen JH, Cox RP, Imhoff JF (2002) Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna–Matthews–Olson protein. Arch Microbiol 178:131–140CrossRefPubMedGoogle Scholar
  2. Baldi P, Baisnee PF (2000) Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths. Bioinformatics 16:865–889CrossRefPubMedGoogle Scholar
  3. Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–792CrossRefPubMedGoogle Scholar
  4. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33(Web Server issue):W451–W454Google Scholar
  5. Bohlin J, Skjerve E, Ussery DW (2008a) Investigations of oligonucleotide usage variance within and between prokaryotes. PLoS Comput Biol 4:e1000057CrossRefPubMedGoogle Scholar
  6. Bohlin J, Skjerve E, Ussery DW (2008b) Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes. BMC Genomics 9:104CrossRefPubMedGoogle Scholar
  7. Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496CrossRefPubMedGoogle Scholar
  8. Cases I, de Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11:248–253CrossRefPubMedGoogle Scholar
  9. Castenholz RW, Bauld J, Jorgenson BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol Ecol 74:325–336CrossRefGoogle Scholar
  10. Chan LK, Weber TS, Morgan-Kiss RM, Hanson TE (2008) A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum). Microbiology 154:818–829CrossRefPubMedGoogle Scholar
  11. Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129CrossRefPubMedGoogle Scholar
  12. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403CrossRefPubMedGoogle Scholar
  13. Davenport CF, Wiehlmann L, Reva ON, Tümmler B (2009) Visualization of Pseudomonas genomic structure by abundant 8–14mer oligonucleotides. Environ Microbiol 11:1092–1104CrossRefPubMedGoogle Scholar
  14. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514CrossRefPubMedGoogle Scholar
  15. Frigaard NU, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200CrossRefPubMedGoogle Scholar
  16. Frigaard NU, Chew AG, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117CrossRefPubMedGoogle Scholar
  17. Ganesan H, Rakitianskaia AS, Davenport CF, Tümmler B, Reva ON (2008) The SeqWord Genome Browser: an online tool for the identification and visualization of atypical regions of bacterial genomes through oligonucleotide usage. BMC Bioinform 9:333CrossRefGoogle Scholar
  18. Gelfand MS, Koonin EV (1997) Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res 25:2430–2439CrossRefPubMedGoogle Scholar
  19. Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. Et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96–101CrossRefPubMedGoogle Scholar
  20. Gorlenko VM (1970) A new phototrophic green sulfur bacterium—Prosthecochloris aestuarii nov. gen. nov. sp. Z Allg Mikrobiol 10:147–149CrossRefPubMedGoogle Scholar
  21. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server issue):W52–W57CrossRefPubMedGoogle Scholar
  22. Grissa I, Vergnaud G, Pourcel C (2008) CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 36(Web Server issue):W145–W148CrossRefPubMedGoogle Scholar
  23. Hallin PF, Ussery DW (2004) CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data. Bioinformatics 20:3682–3686CrossRefPubMedGoogle Scholar
  24. Hallin PF, Binnewies TT, Ussery DW (2008) The genome BLASTatlas—a GeneWiz extension for visualization of whole-genome homology. Mol Biosyst 4:363–371CrossRefPubMedGoogle Scholar
  25. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460CrossRefGoogle Scholar
  26. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951CrossRefPubMedGoogle Scholar
  27. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575CrossRefPubMedGoogle Scholar
  28. Jensen LJ, Friis C, Ussery DW (1999) Three views of microbial genomes. Res Microbiol 150:773–777CrossRefPubMedGoogle Scholar
  29. Karlin S, Mrazek J, Campbell A (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913PubMedGoogle Scholar
  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  31. Liu Y, Harrison PM, Kunin V, Gerstein M (2004) Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5:R64CrossRefPubMedGoogle Scholar
  32. Overmann J, Garcia-Pichel F (2006) The phototrophic way of life. In: Dworkin M et al (eds) The prokaryotes, 3rd edn. Springer, New York, pp 32–85Google Scholar
  33. Pedersen AG, Jensen LJ, Brunak S, Staerfeldt HH, Ussery DW (2000) A DNA structural atlas for Escherichia coli. J Mol Biol 299:907–930CrossRefPubMedGoogle Scholar
  34. Pfennig N (1968) Chlorobium phaeobacteroides nov. spec. and C. phaeovibrioides nov. spec., zwei neue Arten der grünen Schwefelbakterien. Arch Microbiol 63:224–226Google Scholar
  35. Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ (2003) Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res 13:145–155CrossRefPubMedGoogle Scholar
  36. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620CrossRefPubMedGoogle Scholar
  37. Reva ON, Tümmler B (2004) Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns. BMC Bioinform 5:90CrossRefGoogle Scholar
  38. Reva ON, Tümmler B (2005) Differentiation of regions with atypical oligonucleotide composition in bacterial genomes. BMC Bioinform 6:251CrossRefGoogle Scholar
  39. Reva O, Tümmler B (2008) Think big-giant genes in bacteria. Environ Microbiol 10:768–777CrossRefPubMedGoogle Scholar
  40. Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211–233CrossRefPubMedGoogle Scholar
  41. Sharp PM, Li WH (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230PubMedGoogle Scholar
  42. Skovgaard M, Jensen LJ, Friis C, Stærfeldt HH, Worning P, Brunak S, Ussery D (2002) The atlas visualisation of genome-wide information. Methods Microbiol 33:49–63CrossRefGoogle Scholar
  43. Snipen L, Almøy T, Ussery DW (2009) Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 10:385CrossRefPubMedGoogle Scholar
  44. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR: a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186CrossRefPubMedGoogle Scholar
  45. Tavano CL, Donohue TJ (2006) Development of the bacterial photosynthetic apparatus. Curr Opin Microbiol 9:625–631CrossRefPubMedGoogle Scholar
  46. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinform 5:163CrossRefGoogle Scholar
  47. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955CrossRefPubMedGoogle Scholar
  48. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90CrossRefGoogle Scholar
  49. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191CrossRefPubMedGoogle Scholar
  50. Willenbrock H, Friis C, Juncker AS, Ussery DW (2006) An environmental signature for 323 microbial genomes based on codon adaptation indices. Genome Biol 7:R114CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Colin Davenport
    • 1
  • David W. Ussery
    • 2
  • Burkhard Tümmler
    • 1
    • 3
  1. 1.Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie und NeonatologieOE 6711, Medizinische Hochschule HannoverHannoverGermany
  2. 2.Center for Biological Sequence AnalysisTechnical University of DenmarkLyngbyDenmark
  3. 3.Klinische ForschergruppeOE 6710, Medizinische Hochschule HannoverHannoverGermany

Personalised recommendations