Abstract
The light-induced electron transport in purple bacterium Rhodobacter sphaeroides was studied in vivo by means of kinetic difference absorption spectroscopy and kinetics of bacteriochlorophyll fluorescence yield. Measurements of redox state of the oxidised primary donor and cytochrome c and the membrane potential revealed a complex pattern of changes of the electron flow. Effects of the membrane potential on the fluorescence yield were also analysed, and a model for the fluorescence induction curve is presented. The data indicate substantial positive effect of the membrane potential on the fluorescence emission in vivo. Moreover, light-induced changes in light scattering were observed, which suggests occurrence of structural changes on the level of the photosynthetic membrane.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- A:
-
Absorbance
- BChl:
-
Bacteriochlorophyll
- FCCP:
-
Carbonylcyanide-p-trifluoromethoxyphenyl hydrazone
- LHI, LHII:
-
Light-harvesting complex I, II
- P870 :
-
Primary donor of the bacterial reaction centre
- PSII:
-
Photosystem II
- QA :
-
First quinone electron acceptor
- QB :
-
Second quinone electron acceptor
- RC:
-
Reaction centre
References
Amesz J, Neerken S (2002) Excitation energy transfer in anoxygenic photosynthetic bacteria. Photosynth Res 73:73–81. doi:10.1023/A:1020425030675
Bernhardt K, Trissl H-W (2000) Escape probability and trapping mechanism in purple bacteria: revisited. Biochim Biophys Acta 1457:1–17. doi:10.1016/S0005-2728(99)00103-6
Bina D, Litvin R, Vacha F, Siffel P (2006) New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res 88:351–356. doi:10.1007/s11120-006-9071-y
Bulychev AA, Niyazova MM, Turovetsky VB (1986) Electro-induced changes of chlorophyll fluorescence in individual intact chloroplasts. Biochim Biophys Acta 810:218–225
Comayras R, Jungas C, Lavergne J (2005a) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides-I. Quinone domains and excitation transfer in chromatophores and reaction center·antenna complexes. J Biol Chem 280:11203–11213. doi:10.1074/jbc.M412088200
Comayras R, Jungas C, Lavergne J (2005b) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides-II. A study of PufX(-) membranes. J Biol Chem 280:11214–11223. doi:10.1074/jbc.M412089200
Cotton NPL, Jackson JB (1982) The kinetics of carotenoid absorption changes in intact cells of photosynthetic bacteria. Biochim Biophys Acta 679:138–145. doi:10.1016/0005-2728(82)90265-1
Dau H, Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to Photosystem II charge separation reactions studied by a salt jump technique. Biochim Biophys Acta 1098:49–60. doi:10.1016/0005-2728(91)90008-C
Dau H, Windecker R, Hansen U-P (1991) Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves. Biochim Biophys Acta, 337–345
Drews G, Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 231–257
Franzen S, Stanley RJ (2002) A theoretical explanation for quantum yield failure in bacterial photosynthetic reaction centers. Chem Phys 276:115–127. doi:10.1016/S0301-0104(01)00582-1
Ghosh R, Tschopp P, Ghosh-Eicher S, Bachofen R (1994) Protein phosphorylation in Rhodospirillum rubrum: further characterization of the B873 kinase activity. Biochim Biophys Acta 1184:37–44. doi:10.1016/0005-2728(94)90151-1
Gottfried DS, Stocker JW, Boxer SG (1991) Stark effect spectroscopy of bacteriochlorophyll in light-harvesting complexes from photosynthetic bacteria. Biochim Biophys Acta 1059:63–75. doi:10.1016/S0005-2728(05)80188-4
Grammel H, Ghosh R (2008) Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression. J Bacteriol 190:4912–4921. doi:10.1128/JB.00423-08
de Grooth BG, Amesz J (1977) Electrochromic absorbance changes of photosynthetic pigments in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 462:237–246. doi:10.1016/0005-2728(77)90122-0
Holmes NG, Allen JF (1986) Protein posphorylation as a control for excitation energy transfer in Rhodospirillum rubrum. FEBS Lett 200:144–148. doi:10.1016/0014-5793(86)80527-0
Jackson JB, Crofts AR (1969) The high energy state in chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett 4:185–189. doi:10.1016/0014-5793(69)80230-9
Joliot P, Verméglio A, Joliot A (1989) Evidence for supercomplexes between reaction centers, cytochrome c 2 and cytochrome bc 1 complex in Rhodobacter sphaeroides whole cells. Biochim Biophys Acta 975:336–345. doi:10.1016/S0005-2728(89)80341-X
Joliot P, Joliot A, Verméglio A (1997) Photo-induced cyclic electron transfer operates in frozen cells of Rhodobacter sphaeroides. Biochim Biophys Acta 1318:374–384. doi:10.1016/S0005-2728(96)00114-4
Joliot P, Joliot A, Vermeglio A (2005) Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes. Biochim Biophys Acta 1706:204–214. doi:10.1016/j.bbabio.2004.11.002
Joss A, Mez K, Känel B, Hanselmann KW, Bachofen R (1994) Measurement of fluorescence kinetics of phototrophic bacteria in the natural environment. J Plant Physiol 144:333–338
Jungas C, Ranck JL, Rigaud JL, Joliot P, Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18:534–542. doi:10.1093/emboj/18.3.534
Kingma H, Duysens LNM, Van Grondelle R (1983) Magnetic field-stimulated luminiscence and a matrix model for energy transfer. A new method for determining the redox state of the first quinone acceptor in the reaction center of whole cells of Rhodospirillum rubrum. Biochim Biophys Acta 725:434–443. doi:10.1016/0005-2728(83)90184-6
Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231. doi:10.1016/j.bbabio.2004.11.004
Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Van Dover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495. doi:10.1126/science.1059707
Kramer DM, Sacksteder CA (1998) A diffused-optics flash kinetic spectrophotometer (DOFS) for measurements of absorbance changes in intact plants in the steady-state. Photosynth Res 56:103–112. doi:10.1023/A:1005968211506
Lao K, Franzen S, Stanley RJ, Lambright DJ, Boxer SG (1993) Effect of applied electric fields on the quantum yeld of the initial electron-transfer steps in bacterial photosynthesis. I. Quantum yield failure. J Phys Chem B 97:13165–13171. doi:10.1021/j100152a022
Lao K, Franzen S, Steffen M, Lambright D, Stanley R, Boxer SG (1995) Effect of applied electric fields on the quantum yields for the initial electron transfer steps in bacterial photosynthesis. II. Dynamic Stark effect. Chem Phys 197:259–275. doi:10.1016/0301-0104(95)00090-B
Lavergne J, Joliot P, Verméglio A (1989) Partial equilibration of photosynthetic electron carriers under weak illumination: a theoretical and experimental study. Biochim Biophys Acta 975:346–354. doi:10.1016/S0005-2728(89)80342-1
Law CJ, Cogdell RJ, Trissl H-W (1997) Antenna organisation in the purple bacterium Rhodopseudomonas acidophila studied by fluorescence induction. Photosynth Res 52:157–165. doi:10.1023/A:1005853617251
Mulkidjanian AY, Junge W (1994) Calibration and time resolution of lumenal pH-transients in chromatophores of Rhodobacter capsulatus following a single-turnover flash of light: proton release by the cytochrome bc 1-complex is strongly electrogenic. FEBS Lett 353:189–193. doi:10.1016/0014-5793(94)01031-5
Okamura MY, Feher G, Nelson N (1982) Reaction centers. In: Govindjee (ed) Photosynthesis: energy conversion by plants and bacteria, vol 1. Academic Press, NY, pp 195–272
Popovic ZD, Kovacs GJ, Vincett PS, Alegria G, Dutton PL (1986) Electric-field dependence of the quantum yield in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 851:38–48. doi:10.1016/0005-2728(86)90246-X
Pospisil P, Dau H (2002) Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochim Biophys Acta 1554:94–100. doi:10.1016/S0005-2728(02)00216-5
Schmidt KA, Trissl HW (1998) Combined fluorescence and photovoltage studies on chlorosome containing bacteria I. Whole cells of Chloroflexus aurantiacus. Photosynth Res 58:43–55. doi:10.1023/A:1006045711794
Setlik I, Waldburger-Schlapp M, Bachofen R (1990) Slow fluorescence transients in photosynthetic bacteria. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 341–344
Sherman LA, Cohen WS (1972) Proton uptake and quenching of bacteriochlorophyll fluorescence in Rhodopseudomonas spheroides. Biochim Biophys Acta 283:54–66. doi:10.1016/0005-2728(72)90098-9
Siefert E, Irgens RL, Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35:38–44
Sistrom WR (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J Gen Microbiol 28:607–616
Steiger J, Sauer K (1995) Electric field effects on the steady-state fluorescence emission of Rb. sphaeroides chromatophores. In: Mathis M (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 735–738
Strasser RJ, Ghosh R (1995) The fast fluorescence transient of Rhodospirillum rubrum is polyphasic of the type O-K-J-I-P. In: Mathis M (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 915–918
Sturgis JN, Niederman RA (2008) Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling. Photosynth Res 95:269–278. doi:10.1007/s11120-007-9239-0
Tanaka S, Marcus RA (1997) Electron transfer model for the electric field effect on quantum yield of charge separation in bacterial photosynthetic reaction centers. J Phys Chem B 101:5031–5045. doi:10.1021/jp9632854
Trissl H-W (1996) Antenna organisation in purple bacteria investigated by means of fluorescence induction curves. Photosynth Res 47:175–185. doi:10.1007/BF00016180
Trissl H-W, Law CJ, Cogdell RJ (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim Biophys Acta 1412:149–172. doi:10.1016/S0005-2728(99)00056-0
van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811:147–195
van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65. doi:10.1016/0005-2728(94)90166-X
Varga AR, Staehelin LA (1985) Membrane adhesion in photosynthetic bacterial-membranes-light harvesting complex-I (LhI) appears to be the main adhesion factor. Arch Microbiol 141:290–296. doi:10.1007/BF00428839
Verméglio A, Joliot P (2002) Supramolecular organisation of the photosynthetic chain in anoxygenic bacteria. Biochim Biophys Acta 1555:60–64. doi:10.1016/S0005-2728(02)00255-4
Vredenberg WJ (2000) A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination. Biophys J 79:26–38. doi:10.1016/S0006-3495(00)76271-0
Vredenberg WJ, Bulychev AA (2002) Photo-electrochemical control of photosystem II chlorophyll fluorescence in vivo. Bioelectrochemistry 57:123–128. doi:10.1016/S1567-5394(02)00062-2
Vredenberg WJ, Bulychev AA (2003) Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry 60:87–95. doi:10.1016/S1567-5394(03)00053-7
Acknowledgements
The work was supported by grants GACR 206/06/0364, GAAV A608170603 and institutional support AV0Z50510513, MSM6007665808 and MSM6007665801.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bina, D., Litvin, R. & Vacha, F. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth Res 99, 115–125 (2009). https://doi.org/10.1007/s11120-009-9408-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11120-009-9408-4


