Skip to main content
Log in

Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The light-induced electron transport in purple bacterium Rhodobacter sphaeroides was studied in vivo by means of kinetic difference absorption spectroscopy and kinetics of bacteriochlorophyll fluorescence yield. Measurements of redox state of the oxidised primary donor and cytochrome c and the membrane potential revealed a complex pattern of changes of the electron flow. Effects of the membrane potential on the fluorescence yield were also analysed, and a model for the fluorescence induction curve is presented. The data indicate substantial positive effect of the membrane potential on the fluorescence emission in vivo. Moreover, light-induced changes in light scattering were observed, which suggests occurrence of structural changes on the level of the photosynthetic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

A:

Absorbance

BChl:

Bacteriochlorophyll

FCCP:

Carbonylcyanide-p-trifluoromethoxyphenyl hydrazone

LHI, LHII:

Light-harvesting complex I, II

P870 :

Primary donor of the bacterial reaction centre

PSII:

Photosystem II

QA :

First quinone electron acceptor

QB :

Second quinone electron acceptor

RC:

Reaction centre

References

  • Amesz J, Neerken S (2002) Excitation energy transfer in anoxygenic photosynthetic bacteria. Photosynth Res 73:73–81. doi:10.1023/A:1020425030675

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt K, Trissl H-W (2000) Escape probability and trapping mechanism in purple bacteria: revisited. Biochim Biophys Acta 1457:1–17. doi:10.1016/S0005-2728(99)00103-6

    Article  PubMed  CAS  Google Scholar 

  • Bina D, Litvin R, Vacha F, Siffel P (2006) New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res 88:351–356. doi:10.1007/s11120-006-9071-y

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Niyazova MM, Turovetsky VB (1986) Electro-induced changes of chlorophyll fluorescence in individual intact chloroplasts. Biochim Biophys Acta 810:218–225

    Google Scholar 

  • Comayras R, Jungas C, Lavergne J (2005a) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides-I. Quinone domains and excitation transfer in chromatophores and reaction center·antenna complexes. J Biol Chem 280:11203–11213. doi:10.1074/jbc.M412088200

    Article  PubMed  CAS  Google Scholar 

  • Comayras R, Jungas C, Lavergne J (2005b) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides-II. A study of PufX(-) membranes. J Biol Chem 280:11214–11223. doi:10.1074/jbc.M412089200

    Article  PubMed  CAS  Google Scholar 

  • Cotton NPL, Jackson JB (1982) The kinetics of carotenoid absorption changes in intact cells of photosynthetic bacteria. Biochim Biophys Acta 679:138–145. doi:10.1016/0005-2728(82)90265-1

    Article  CAS  Google Scholar 

  • Dau H, Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to Photosystem II charge separation reactions studied by a salt jump technique. Biochim Biophys Acta 1098:49–60. doi:10.1016/0005-2728(91)90008-C

    Article  CAS  Google Scholar 

  • Dau H, Windecker R, Hansen U-P (1991) Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves. Biochim Biophys Acta, 337–345

  • Drews G, Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 231–257

    Google Scholar 

  • Franzen S, Stanley RJ (2002) A theoretical explanation for quantum yield failure in bacterial photosynthetic reaction centers. Chem Phys 276:115–127. doi:10.1016/S0301-0104(01)00582-1

    Article  CAS  Google Scholar 

  • Ghosh R, Tschopp P, Ghosh-Eicher S, Bachofen R (1994) Protein phosphorylation in Rhodospirillum rubrum: further characterization of the B873 kinase activity. Biochim Biophys Acta 1184:37–44. doi:10.1016/0005-2728(94)90151-1

    Article  CAS  Google Scholar 

  • Gottfried DS, Stocker JW, Boxer SG (1991) Stark effect spectroscopy of bacteriochlorophyll in light-harvesting complexes from photosynthetic bacteria. Biochim Biophys Acta 1059:63–75. doi:10.1016/S0005-2728(05)80188-4

    Article  CAS  Google Scholar 

  • Grammel H, Ghosh R (2008) Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression. J Bacteriol 190:4912–4921. doi:10.1128/JB.00423-08

    Article  PubMed  CAS  Google Scholar 

  • de Grooth BG, Amesz J (1977) Electrochromic absorbance changes of photosynthetic pigments in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 462:237–246. doi:10.1016/0005-2728(77)90122-0

    Article  PubMed  Google Scholar 

  • Holmes NG, Allen JF (1986) Protein posphorylation as a control for excitation energy transfer in Rhodospirillum rubrum. FEBS Lett 200:144–148. doi:10.1016/0014-5793(86)80527-0

    Article  CAS  Google Scholar 

  • Jackson JB, Crofts AR (1969) The high energy state in chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett 4:185–189. doi:10.1016/0014-5793(69)80230-9

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Verméglio A, Joliot A (1989) Evidence for supercomplexes between reaction centers, cytochrome c 2 and cytochrome bc 1 complex in Rhodobacter sphaeroides whole cells. Biochim Biophys Acta 975:336–345. doi:10.1016/S0005-2728(89)80341-X

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A, Verméglio A (1997) Photo-induced cyclic electron transfer operates in frozen cells of Rhodobacter sphaeroides. Biochim Biophys Acta 1318:374–384. doi:10.1016/S0005-2728(96)00114-4

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A, Vermeglio A (2005) Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes. Biochim Biophys Acta 1706:204–214. doi:10.1016/j.bbabio.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  • Joss A, Mez K, Känel B, Hanselmann KW, Bachofen R (1994) Measurement of fluorescence kinetics of phototrophic bacteria in the natural environment. J Plant Physiol 144:333–338

    CAS  Google Scholar 

  • Jungas C, Ranck JL, Rigaud JL, Joliot P, Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18:534–542. doi:10.1093/emboj/18.3.534

    Article  PubMed  CAS  Google Scholar 

  • Kingma H, Duysens LNM, Van Grondelle R (1983) Magnetic field-stimulated luminiscence and a matrix model for energy transfer. A new method for determining the redox state of the first quinone acceptor in the reaction center of whole cells of Rhodospirillum rubrum. Biochim Biophys Acta 725:434–443. doi:10.1016/0005-2728(83)90184-6

    Article  CAS  Google Scholar 

  • Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231. doi:10.1016/j.bbabio.2004.11.004

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Van Dover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495. doi:10.1126/science.1059707

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA (1998) A diffused-optics flash kinetic spectrophotometer (DOFS) for measurements of absorbance changes in intact plants in the steady-state. Photosynth Res 56:103–112. doi:10.1023/A:1005968211506

    Article  CAS  Google Scholar 

  • Lao K, Franzen S, Stanley RJ, Lambright DJ, Boxer SG (1993) Effect of applied electric fields on the quantum yeld of the initial electron-transfer steps in bacterial photosynthesis. I. Quantum yield failure. J Phys Chem B 97:13165–13171. doi:10.1021/j100152a022

    Article  CAS  Google Scholar 

  • Lao K, Franzen S, Steffen M, Lambright D, Stanley R, Boxer SG (1995) Effect of applied electric fields on the quantum yields for the initial electron transfer steps in bacterial photosynthesis. II. Dynamic Stark effect. Chem Phys 197:259–275. doi:10.1016/0301-0104(95)00090-B

    Article  CAS  Google Scholar 

  • Lavergne J, Joliot P, Verméglio A (1989) Partial equilibration of photosynthetic electron carriers under weak illumination: a theoretical and experimental study. Biochim Biophys Acta 975:346–354. doi:10.1016/S0005-2728(89)80342-1

    Article  CAS  Google Scholar 

  • Law CJ, Cogdell RJ, Trissl H-W (1997) Antenna organisation in the purple bacterium Rhodopseudomonas acidophila studied by fluorescence induction. Photosynth Res 52:157–165. doi:10.1023/A:1005853617251

    Article  CAS  Google Scholar 

  • Mulkidjanian AY, Junge W (1994) Calibration and time resolution of lumenal pH-transients in chromatophores of Rhodobacter capsulatus following a single-turnover flash of light: proton release by the cytochrome bc 1-complex is strongly electrogenic. FEBS Lett 353:189–193. doi:10.1016/0014-5793(94)01031-5

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY, Feher G, Nelson N (1982) Reaction centers. In: Govindjee (ed) Photosynthesis: energy conversion by plants and bacteria, vol 1. Academic Press, NY, pp 195–272

    Google Scholar 

  • Popovic ZD, Kovacs GJ, Vincett PS, Alegria G, Dutton PL (1986) Electric-field dependence of the quantum yield in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 851:38–48. doi:10.1016/0005-2728(86)90246-X

    Article  CAS  Google Scholar 

  • Pospisil P, Dau H (2002) Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochim Biophys Acta 1554:94–100. doi:10.1016/S0005-2728(02)00216-5

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KA, Trissl HW (1998) Combined fluorescence and photovoltage studies on chlorosome containing bacteria I. Whole cells of Chloroflexus aurantiacus. Photosynth Res 58:43–55. doi:10.1023/A:1006045711794

    Article  CAS  Google Scholar 

  • Setlik I, Waldburger-Schlapp M, Bachofen R (1990) Slow fluorescence transients in photosynthetic bacteria. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 341–344

    Google Scholar 

  • Sherman LA, Cohen WS (1972) Proton uptake and quenching of bacteriochlorophyll fluorescence in Rhodopseudomonas spheroides. Biochim Biophys Acta 283:54–66. doi:10.1016/0005-2728(72)90098-9

    Article  PubMed  CAS  Google Scholar 

  • Siefert E, Irgens RL, Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35:38–44

    PubMed  CAS  Google Scholar 

  • Sistrom WR (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J Gen Microbiol 28:607–616

    PubMed  CAS  Google Scholar 

  • Steiger J, Sauer K (1995) Electric field effects on the steady-state fluorescence emission of Rb. sphaeroides chromatophores. In: Mathis M (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 735–738

    Google Scholar 

  • Strasser RJ, Ghosh R (1995) The fast fluorescence transient of Rhodospirillum rubrum is polyphasic of the type O-K-J-I-P. In: Mathis M (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 915–918

    Google Scholar 

  • Sturgis JN, Niederman RA (2008) Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling. Photosynth Res 95:269–278. doi:10.1007/s11120-007-9239-0

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Marcus RA (1997) Electron transfer model for the electric field effect on quantum yield of charge separation in bacterial photosynthetic reaction centers. J Phys Chem B 101:5031–5045. doi:10.1021/jp9632854

    Article  CAS  Google Scholar 

  • Trissl H-W (1996) Antenna organisation in purple bacteria investigated by means of fluorescence induction curves. Photosynth Res 47:175–185. doi:10.1007/BF00016180

    Article  CAS  Google Scholar 

  • Trissl H-W, Law CJ, Cogdell RJ (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim Biophys Acta 1412:149–172. doi:10.1016/S0005-2728(99)00056-0

    Article  PubMed  CAS  Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811:147–195

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65. doi:10.1016/0005-2728(94)90166-X

    Article  CAS  Google Scholar 

  • Varga AR, Staehelin LA (1985) Membrane adhesion in photosynthetic bacterial-membranes-light harvesting complex-I (LhI) appears to be the main adhesion factor. Arch Microbiol 141:290–296. doi:10.1007/BF00428839

    Article  PubMed  CAS  Google Scholar 

  • Verméglio A, Joliot P (2002) Supramolecular organisation of the photosynthetic chain in anoxygenic bacteria. Biochim Biophys Acta 1555:60–64. doi:10.1016/S0005-2728(02)00255-4

    Article  PubMed  Google Scholar 

  • Vredenberg WJ (2000) A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination. Biophys J 79:26–38. doi:10.1016/S0006-3495(00)76271-0

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Bulychev AA (2002) Photo-electrochemical control of photosystem II chlorophyll fluorescence in vivo. Bioelectrochemistry 57:123–128. doi:10.1016/S1567-5394(02)00062-2

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Bulychev AA (2003) Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry 60:87–95. doi:10.1016/S1567-5394(03)00053-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by grants GACR 206/06/0364, GAAV A608170603 and institutional support AV0Z50510513, MSM6007665808 and MSM6007665801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Vacha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bina, D., Litvin, R. & Vacha, F. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth Res 99, 115–125 (2009). https://doi.org/10.1007/s11120-009-9408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9408-4

Keywords