Skip to main content
Log in

A viewpoint: Why chlorophyll a?

Photosynthesis Research Aims and scope Submit manuscript

Cite this article

Abstract

Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a 2, (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at −1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. The calculation of 700 nm was based on, among others, the following assumptions and approximations: (1) The sunlight spectrum was approximated as a Planck 6000 K blackbody spectrum, modified by a factor depending on the solar system geometry. (2) The shape of the long-wavelength band of the photosynthetic pigment was approximated by a Gaussian function. (3) The photosynthetic system was considered to be at 300 K. (4) The maximum chemical potential that can be extracted from the photons was accepted as described by Ross and Calvin (1967). (5) A limiting value for the oscillator strength can be accommodated within a certain volume. (6) The maximum extractable power (energy per time) is the product of chemical potential achieved by the photon absorption and the rate of photon absorption. For details, see Björn (1976); and for basics, see Knox (1969).

Abbreviations

Chl:

Chlorophyll

Pheo:

Pheophytin

PS:

Photosystem

RC:

Reaction center

TMH:

Transmembrane helix

References

  • Adams WW, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration. Chlorophyll fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 583–604

    Google Scholar 

  • Allen JF, Martin W (2007) Out of thin air. Nature 445:610–612. doi:10.1038/445610a

    Article  PubMed  CAS  Google Scholar 

  • Amarie S, Standfuss J, Barros T, Kühlbrandt W, Dreuw A, Wachtveitl J (2007) Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis. J Phys Chem B 111:3481–3487. doi:10.1021/jp066458q

    Article  PubMed  CAS  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant Photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63. doi:10.1038/nature05687

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative proton and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431. doi:10.1098/rstb.2000.0703

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2008) Crystal structure of the oxygen-evolving complex of Photosystem II. Inorg Chem 47:1700–1710. doi:10.1021/ic701835r

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz M (1981) New chlorophyll chromophores isolated from a chlorophyll-deficient mutant of maize. Photobiochem Photobiophys 2:199–207

    CAS  Google Scholar 

  • Ben Shem A, Frolow F, Nelson N (2004) Evolution of Photosystem I – from symmetry through pseudosymmetry to asymmetry. FEBS Lett 564:274–280. doi:10.1016/S0014-5793(04)00360-6

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD, Barber J (2003) Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100:9050–9054. doi:10.1073/pnas.1532271100

    Article  PubMed  CAS  Google Scholar 

  • Björn LO (1976) Why are plants green? Photosynthetica 10:121–129

    Google Scholar 

  • Björn LO, Ghiradella H (2008) Spectral tuning in biology. In: Björn LO (ed) Photobiology: the science of light and life. Springer, New York, pp 155–196

    Chapter  Google Scholar 

  • Björn LO, Govindjee (2008) The evolution of photosynthesis and its environmental impact. In: Björn LO (ed) Photobiology: the science of light and life. Springer, New York, pp 234–274

    Chapter  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373. doi:10.1016/S0005-2728(96)00112-0

    Article  CAS  Google Scholar 

  • Broess K, Trinkunas G, van Hoek A, Croce R, van Amerongen H (2008) Determination of the excitation migration time in Photosystem II: consequences for the membrane organization and charge separation parameters. Biochim Biophys Acta 1777:404–409. doi:10.1016/j.bbabio.2008.02.003

    Article  PubMed  CAS  Google Scholar 

  • Brody S (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960. Photosynth Res 73:127–132. doi:10.1023/A:1020405921105

    Article  PubMed  CAS  Google Scholar 

  • Brody S, Rabinowitch E (1957) Excitation lifetime of photosynthetic pigments in vivo and in vitro. Science 125:555–557. doi:10.1126/science.125.3247.555

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Cai Z-L (2007) Theoretical study of the thermodynamic properties of chlorophyll d – polypeptides coordinating ligand. Biochim Biophys Acta 1767:603–609. doi:10.1016/j.bbabio.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Eggink LL, Hoober JK, Larkum AWD (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127:2052–2053. doi:10.1021/ja043462b

    Article  PubMed  CAS  Google Scholar 

  • Cramer WA, Yan J, Zhang H, Kurisu G, Janet L, Smith JL (2005) Structure of the cytochrome b 6 f complex: new prosthetic groups, Q-space, and the ‘hors d’oeuvres hypothesis’ for assembly of the complex. Photosynth Res 85:133–144. doi:10.1007/s11120-004-2149-5

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, van Grondelle R (2000) Primary charge separation in Photosystem II. Photosynth Res 63:195–208. doi:10.1023/A:1006468024245

    Article  PubMed  CAS  Google Scholar 

  • Demeter S, Ke B (1977) Electrochemical and spectra-kinetic evidence for an intermediate electron acceptor in Photosystem I. Biochim Biophys Acta 462:770–774. doi:10.1016/0005-2728(77)90117-7

    Article  PubMed  CAS  Google Scholar 

  • Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res 39:2817–2832. doi:10.1016/S0042-6989(98)00332-0

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  PubMed  CAS  Google Scholar 

  • Fiedor L, Kania A, Myśliwa-Kurdziel B, Orzel L, Stochel G (2008) Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. Biochim Biophys Acta 1777:1491–1500. doi:10.1016/j.bbabio.2008.09.005

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P, Krauss NM (2001) Structure of Photosystem I. Biochim Biophys Acta 1507:5–31. doi:10.1016/S0005-2728(01)00195-5

    Article  PubMed  CAS  Google Scholar 

  • Fujihashi M, Numoto N, Kobayashi Y, Mizushima A, Tsujimura M, Nakamura A, Kawarabayasi Y, Kunio Miki K (2007) Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. J Mol Biol 365:903–910. doi:10.1016/j.jmb.2006.10.012

    Article  PubMed  CAS  Google Scholar 

  • Gemperlein R, Paul R, Lindauer E, Steiner A (1980) UV fine structure of the spectral sensitivity of flies’ visual cells. Naturwissenschaften 67:565–566. doi:10.1007/BF00450671

    Article  Google Scholar 

  • Gilmore AM (2004) Excess light stress: probing excitation dissipation mechanisms through global analysis of time- and wavelength-resolved Chl a fluorescence. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration. Chlorophyll fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 555–581

    Google Scholar 

  • Golan T, Li X-P, Mueller-Moule P, Niyogi KK (2004) Using mutants to understand light stress acclimation in plants. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration. Chlorophyll fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 525–554

    Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol 26. Springer, Dordrecht

    Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163. doi:10.1016/0022-2852(61)90236-3

    Article  CAS  Google Scholar 

  • Gouterman M (1978) Optical spectra and electronic structure of porphyrins and related rings. In: The porphyrins, vol III. Physical chemistry, part A. Academic Press, New York, pp 1–165

  • Govindjee, Satoh K (1983) Fluorescence properties in Chl b- and Chl c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press (now Elsevier), New York, pp 497–537

    Google Scholar 

  • Grabolle M, Dau H (2005) Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708:209–218. doi:10.1016/j.bbabio.2005.03.007

    Article  PubMed  CAS  Google Scholar 

  • Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 67–88

    Google Scholar 

  • Green BR, Parson WW (eds) (2003) Light-harvesting antennas in photosynthesis. Advances in photosynthesis and respiration,vol 13. Springer, Dordrecht

    Google Scholar 

  • Greenfield S, Seibert M, Wasielewski MR, Govindjee (1997) Direct measurement of the effective rate constant for primary charge separation in isolated photosystem II reaction centers. J Phys Chem 101:2251–2255. doi:10.1021/jp962982t

    CAS  Google Scholar 

  • Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) (2006) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht

    Google Scholar 

  • Grotjohann I, Fromme P (2005) Structure of cyanobacterial Photosystem I. Photosynth Res 85:51–72. doi:10.1007/s11120-005-1440-4

    Article  PubMed  CAS  Google Scholar 

  • Haehnel W, Noy D, Scheer H (2009) Denovo designed bacteriochlorophyll-binding helix-bundle proteins. In: Hunter CN, Daldal F, Thurnauer MC, Beatty TJ (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht, pp 895–912

    Chapter  Google Scholar 

  • Holzwarth AR, Müller MG, Niklas J, Lubitz W (2005) Charge recombination fluorescence in Photosystem I reaction centers from Chlamydomonas reinhardtii. J Phys Chem B 109:5903–5911. doi:10.1021/jp046299f

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Roegner M (2006a) Kinetics and mechanism of electron transfer in intact Photosystem II and in isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900. doi:10.1073/pnas.0505371103

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth AR, Müller MG, Niklas J, Lubitz W (2006b) Ultrafast transient absorption study on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center Chls provide new insight into the nature of the primary electron donor. Biophys J 90:552–565. doi:10.1529/biophysj.105.059824

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Argyroudi-Akoyunoglou JH (2004) Assembly of light-harvesting complexes of Photosystem II and the role of chlorophyll b. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration. Chlorophyll fluorescence: a signature of photosynthesis, vol. 19. Springer, Dordrecht, pp 679–712

    Google Scholar 

  • Hoober JK, Eggink LL, Chen M (2007) Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res 94:387–400. doi:10.1007/s11120-007-9181-1

    Article  PubMed  CAS  Google Scholar 

  • Houssier C, Sauer K (1970) Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. J Am Chem Soc 92:779–791. doi:10.1021/ja00707a007

    Article  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323. doi:10.1073/pnas.95.22.13319

    Article  PubMed  CAS  Google Scholar 

  • Ishikita H, Loll B, Biesiadka J, Saenger S, Ernst-Walter Knapp EW (2005) Redox potentials of chlorophylls in the Photosystem II reaction center. Biochemistry 44:4124–4418

    Google Scholar 

  • Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M (2007) Function of chlorophyll d in reaction centers of Photosysterns I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46(43):12473–12481. doi:10.1021/bi7008085

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411:909–917. doi:10.1038/35082000

    Article  PubMed  CAS  Google Scholar 

  • Kashiyama Y, Miyashita H, Ohkubo S, Ogawa O, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Nagata T, Ohkouchi N (2008) Evidence of global chlorophyll d. Science 321:658. doi:10.1126/science.1158761

    Article  PubMed  CAS  Google Scholar 

  • Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguchi M, Laha JK, Ptaszek M, Lindsey JS, Bocian DF, Holten D (2007) Effects of substituents on synthetic analogs of chlorophylls. Part 2: redox properties, optical spectra and electronic structure. Photochem Photobiol 83:1125–1143. doi:10.1111/j.1751-1097.2007.00151.x

    Article  PubMed  CAS  Google Scholar 

  • Keely BJ (2006) Geochemistry of chlorophylls. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 535–561

    Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007a) Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7:222–251. doi:10.1089/ast.2006.0105

    Article  PubMed  CAS  Google Scholar 

  • Kiang NY, Segura A, Tinetti G, Govindjee, Blankenship RE, Cohen M, Siefert J, Crisp D, Meadows VS (2007b) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extra-solar worlds. Astrobiology 7:252–274. doi:10.1089/ast.2006.0108

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16. doi:10.1007/s11120-007-9168-y

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Demeter S, Krasnovskii AA (1979) Photoreduction of pheophytin in Photosystem 2 of chloroplasts with respect to redox potential of the medium. Dokl Akad Nauk SSSR 249:227–230. in Russian

    Google Scholar 

  • Knox RS (1969) Thermodynamics and the primary processes of photosynthesis. Biophys J 9(11):1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602. doi:10.1016/j.bbabio.2007.02.015

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK, Balashov SP (2008) Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna. Biochim Biophys Acta 1777:684–688. doi:10.1016/j.bbabio.2008.05.005

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, advances in photosynthesis and respiration, vol 25. Springer, New York, pp 261–282

    Google Scholar 

  • Larkum AWD, Douglas SE, Raven JA (eds) (2003) Photosynthesis in algae. Advances in photosynthesis and respiration (Series editor: Govindjee), vol 14. Springer, Dordrecht

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. doi:10.1038/nature02373

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall D (1973) Why chlorophyll? Ann N Y Acad Sci 206:483–494. doi:10.1111/j.1749-6632.1973.tb43231.x

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall D (1976) Chlorophyll and photosynthesis. Philos Trans R Soc Lond C 273(924):287–294. doi:10.1098/rstb.1976.0014

    Article  CAS  Google Scholar 

  • Miloslavina Y, Szczepaniak M, Müller G, Sander J, Nowaczyk M, Roegner M, Holzwarth AR (2006) Charge separation kinetics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry 45:2436–2442. doi:10.1021/bi052248c

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855. doi:10.1073/pnas.0405667102

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Moise N, Quilez R, Abadia A, Abadia J, Moya I (2001) Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of Photosystem II. Photosynth Res 70:207–220. doi:10.1023/A:1017965229788

    Article  PubMed  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633. doi:10.1126/science.1095459

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Suzawa T, Kato Y, Watanabe T (2005) Significant species-dependence of P700 redox potential as verified by spectroelectrochemistry: comparison of spinach and Theromosynechococcus elongatus. FEBS Lett 579:2273–2276. doi:10.1016/j.febslet.2005.02.076

    Article  PubMed  CAS  Google Scholar 

  • Niklas K, Giannasi DE (1977) Flavonoids and other chemical constituents of fossil Miocene Zelkova (Ulmaceae). Science 196:877–878. doi:10.1126/science.196.4292.877

    Article  PubMed  CAS  Google Scholar 

  • Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:599–648. doi:10.1046/j.1365-3040.2000.00563.x

    Article  Google Scholar 

  • Ohkubo S, Miyashita H, Murakami A, Takeyama H, Tsuchiya T, Mimuro M (2006) Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae. Appl Environ Microbiol 72:7912–7915. doi:10.1128/AEM.01148-06

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386. doi:10.1023/B:PRES.0000030457.06495.83

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC (2004) Fluorescence of photosynthetic pigments in vitro and in vivo. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration. Chlorophyll fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 43–63

    Google Scholar 

  • Pecoraro VL, Hsieh WY (2008) In search of elusive high-valent manganese species that evaluate mechanisms of photosynthetic water oxidation. Inorg Chem 47:1765–1778. doi:10.1021/ic7017488

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Kostic’ NM (1994) Photoinduced electron transfer from the triplet state of zinc cytochrome c to ferricytochrome b5 is gated by configurational fluctuations of the diprotein complex. Biochemistry 33:12592–12599. doi:10.1021/bi00208a009

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Diner BA (2007) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. Coord Chem Rev 252:259–272. doi:10.1016/j.ccr.2007.07.016

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41:8518–8527. doi:10.1021/bi025725p

    Article  PubMed  CAS  Google Scholar 

  • Rau HK, Snigula H, Struck A, Bruno R, Scheer H, Haehnel W (2001) Design, synthesis and properties of chlorophyll proteins. Eur J Biochem 268:3284–3295. doi:10.1046/j.1432-1327.2001.02231.x

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Blankenship RE (2004) The evolutionary development of the protein complement of Photosystem 2. Biochim Biophys Acta 1655:133–139. doi:10.1016/j.bbabio.2003.10.015

    Article  PubMed  CAS  Google Scholar 

  • Renger T, Schlodder E (2008) The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. J Phys Chem B 112:7351–7354. doi:10.1021/jp801900e

    Article  PubMed  CAS  Google Scholar 

  • Ross RT, Calvin M (1967) Thermodynamics of light emission and free-energy storage in photosynthesis. Biophys J 7:595–614

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG, Nealson KH (1977) A luminous bacterium that emits yellow light. Science 196:432–434. doi:10.1126/science.850787

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Faller P (2002) Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B 358:245–253. doi:10.1098/rstb.2002.1186

    Article  CAS  Google Scholar 

  • Rutherford AW, Mullet JE, Crofts AR (1981) Measurement of the midpoint potential of the pheophytin acceptor of Photosystem II. FEBS Lett 123:235–237. doi:10.1016/0014-5793(81)80295-5

    Article  CAS  Google Scholar 

  • Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007. doi:10.1093/molbev/msl079

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M, Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in Photosystem I through flexibility of the proteins. J Biol Chem 276:4293–4297. doi:10.1074/jbc.M008238200

    Article  PubMed  CAS  Google Scholar 

  • Savikhin S, Xu W, Martinsson P, Chitnis PR, Struve WS (2001) Kinetics of charge separation and A0  → A1 electron transfer in Photosystem I reaction centers. Biochemistry 40:9282–9290. doi:10.1021/bi0104165

    Article  PubMed  CAS  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Schilstra MJ, Nield J, Dörner W, Hankamer B, Carradus M, Barter LMC, Barber J, Klug DR (1999) Similarity between electron donor side reactions in the solubilized Photosystem II – LHC II supercomplex and Photosystem-II-containing membranes. Photosynth Res 60:191–198. doi:10.1023/A:1006203401278

    Article  CAS  Google Scholar 

  • Schlodder E, Cetin M, Eckert H-J, Schmitt FJ, Barber J, Telfer A (2007) Both chlorophylls a and d are essential for the photochemistry. Biochim Biophys Acta 1767:589–595. doi:10.1016/j.bbabio.2007.02.018

    Article  PubMed  CAS  Google Scholar 

  • Schmuck G, Moya I (1994) Time-resolved chlorophyll fluorescence spectra of intact leaves. Remote Sens Environ 47:72–76. doi:10.1016/0034-4257(94)90130-9

    Article  Google Scholar 

  • Seyfried L, Fukshansky L (1983) Light gradients in plant tissue. Appl Opt 22:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Shedbalkar VP, Rebeiz CA (1992) Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal Biochem 207:261–266. doi:10.1016/0003-2697(92)90010-5

    Article  PubMed  CAS  Google Scholar 

  • Shipman L (1982) Electronic structure and function of chlorophylls and their pheophytins. In: Govindjee (ed) Photosynthesis: energy conversion in plants and bacteria, vol I. Academic Press, New York, pp 275–291

    Google Scholar 

  • Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1:1–12. doi:10.1038/ismej.2007.13

    Article  Google Scholar 

  • Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page LE, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010. doi:10.1073/pnas.0709772105

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2008a) Identification of the special pair of Photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288. doi:10.1073/pnas.0701847104

    Article  CAS  Google Scholar 

  • Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008b) Characterization of highly purified Photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 283:18198–18209

    Article  PubMed  CAS  Google Scholar 

  • Treibs A (1934) Über das vorkommen von chlorophyll-derivaten in einem Ölschiefer aus der oberen Trias. Liebigs Ann 509:103–114

    Article  CAS  Google Scholar 

  • Vass I, Cser K, Cheregi O (2007) Molecular mechanisms of light stress of photosynthesis. Stress Responses Biol Med 1113:114–122

    CAS  Google Scholar 

  • Vavilin D, Xu H, Lin S, Vermaas W (2003) Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant. Biochemistry 42:1731–1746. doi:10.1021/bi026853g

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann TC (1993) Plant tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251. doi:10.1146/annurev.pp.44.060193.001311

    Article  Google Scholar 

  • Vogelmann TC, Björn LO (1984) Measurement of light gradients and spectral regime in plant tissue with a fibre optic probe. Physiol Plantarum 60:361–368

    Article  Google Scholar 

  • Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323

    Article  Google Scholar 

  • Vogt K, Kirschfeld K (1983) Sensitizing pigment in the fly. Biophys Struct Mech 9:319–328

    Article  CAS  Google Scholar 

  • Ward WW, Cormier MJ (1976) In vitro energy transfer in Renilla bioluminescence. J Physical Chem 80:2289–2291

    Article  CAS  Google Scholar 

  • Ward WW, Cormier MJ (1978) Energy-transfer via protein–protein interaction in Renilla bioluminescence. Photochem Photobiol 27:389–396

    Article  CAS  Google Scholar 

  • Ward WW, Cody CW, Hart RC, Cormier MJ (1980) Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem Photobiol 31:611–615

    Article  CAS  Google Scholar 

  • Weiss C (1972) pi-Electron structure and absorption spectra of chlorophylls in solution. J Mol Spectrosc 44(1):37–80

    Article  CAS  Google Scholar 

  • Weiss C, Kobayashi H, Gouterman M (1965) Spectra of porphyrins: part III. Self-consistent molecular orbital calculations of porphyrin and related ring systems. J Mol Spectrosc 16:415–450

    Article  CAS  Google Scholar 

  • Widell S, Björn LO (1976) Light-induced absorption changes in etiolated coleoptiles. Physiol Plant 36:305–309

    Article  Google Scholar 

  • Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II: the light-driven water:plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 24. Springer, Dordrecht

    Google Scholar 

  • Zapata M, Garrido JL, Jeffrey JW (2003) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry. biophysics, functions and applications. Springer, Dordrecht, pp 39–53

    Google Scholar 

Download references

Acknowledgments

We thank Jan Kern for Figure 6 and Table 2 and Tony Crofts for discussion. We also thank Rajni Govindjee and Thomas G. Ebrey for their suggestions to improve this viewpoint, in particular on the question of the color of plants. Blankenship thankfully acknowledges support from the Exobiology program from NASA (National Aeronautics Space Administration); and Govindjee thanks Head of the Department of Plant Biology, at the University of Illinois, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindjee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Björn, L.O., Papageorgiou, G.C., Blankenship, R.E. et al. A viewpoint: Why chlorophyll a?. Photosynth Res 99, 85–98 (2009). https://doi.org/10.1007/s11120-008-9395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9395-x

Keywords

Navigation