Skip to main content
Log in

Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Molecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied. Calculated absorption, linear dichroism, and polarization dependent fluorescence-excitation spectra of the studied long macrostructures were practically identical, but circular dichroism spectra turned out to be very sensitive to geometry and monomeric transition dipole moment orientations of the aggregates. The simulations for long multiple rod and spiral-type macrostructures, observed in recent high-resolution electron microscopy images (Oostergetel et al., FEBS Lett 581:5435–5439, 2007) gave shapes of circular dichroism spectra observed experimentally for chlorosomes. It was shown that the ratio of total circular dichroism intensity to integrated absorption of the Q y transition is a good measure of degree of tubular structures in the chlorosomes. Calculations suggest that the broad Q y line width of chlorosomes of sulfur bacteria could be due to (1) different orientations of the transition moment vectors in multi-walled rod structures or (2) a variety of Bchl-aggregate structures in the chlorosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Bchl:

Bacteriochlorophyll

Cb:

Chlorobium

Cf:

Chloroflexus

CD:

Circular dichroism

EM:

Electron microscopy

LD:

Linear dichroism

NMR:

Nuclear magnetic resonance

References

  • Agranovich VM, Galanin MD (1982) Electronic excitation energy transfer in condensed matter. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Airs RL, Borrego CM et al (2001) Identification of the bacteriochlorophyll homologues of Chlorobium phaeobacteroides strain UdG6053 grown at low light intensity. Photosynth Res 70:221–230

    Article  PubMed  CAS  Google Scholar 

  • Arellano JB, Psencik J et al (2000) Effect of carotenoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 71:715–723

    Article  PubMed  CAS  Google Scholar 

  • Balaban TS, Holzwarth AR et al (1995) CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34:15259–15266

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (1996) Chlorosome antennas from green photosynthetic bacteria. The Spectrum 9:2–7

    Google Scholar 

  • Blankenship RE, Olson JM et al (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bobe FW, Pfenning N et al (1990) Red shift of absorption maxima in chlorobiineae through enzymic methylation of their antenna bacteriochlorophylls. Biochemistry 29:4340–4348

    Article  PubMed  CAS  Google Scholar 

  • Borrego CM, Arellano JB et al (1999a) The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth Res 60:257–264

    Article  CAS  Google Scholar 

  • Borrego CM, Gerola PD et al (1999b) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brune DC, Nozawa T et al (1987) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochem 26:8644–8652

    Article  CAS  Google Scholar 

  • Chiefari J, Griebenow K et al (1995) Models for the pigment organization in the chlorosomes of photosynthetic bacteria: diastereoselective control of in-vitro bacteriochlorophyll c s aggregation. J Phys Chem 99:1357–1365

    Article  CAS  Google Scholar 

  • Cohen-Bazire G, Pfenning N et al (1964) The fine structure of green bacteria. J Cell Biol 22:207–225

    Article  PubMed  CAS  Google Scholar 

  • Cruden DL, Stanier RY (1970) The characterization of Chlorobium vesicles and membranes isolated from green bacteria. Arch Microbiol 72:115–134

    CAS  Google Scholar 

  • Davydov AS (1971) Theory of molecular excitons. Plenum Press, New York

    Google Scholar 

  • de Ruijter WPF (2006) Photodynamics of light-harvesting systems. Casimir PhD Series, Delft-Leiden

    Google Scholar 

  • Didraga C, Knoester J (2003) Absorption and dichroism spectra of cylindrical J aggregates and chlorosomes of green bacteria. J Lumin 102–103:60–66

    Article  CAS  Google Scholar 

  • Di Valentin M, Malorni D et al (2002) Structural investigation of oxidized chlorosomes from green bacteria using multifrequency electron paramagnetic resonance up to 330 GHz. Photosynth Res 71:33–44

    Article  PubMed  CAS  Google Scholar 

  • Egawa A, Fujiwara T et al (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Nat Acad Sci USA 104:790–795

    Article  PubMed  CAS  Google Scholar 

  • Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochem 23:3693–3700

    Article  CAS  Google Scholar 

  • Fetisova ZG, Mauring K (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett 307:371–374

    Article  PubMed  CAS  Google Scholar 

  • Fetisova ZG, Mauring K (1993) Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett 323:159–162

    Article  PubMed  CAS  Google Scholar 

  • Fetisova ZG, Kharchenko SG et al (1986) Strong orientational ordering of the near-infrared transition moment vectors of light-harvesting antenna bacterioviridin in chromatophores of the green photosynthetic bacterium Chlorobium limicola. FEBS Lett 199:234–236

    Article  CAS  Google Scholar 

  • Fetisova ZG, Mauring K et al (1994) Strongly exciton-coupled BChl e chromophore system in the chromosomal antenna of intact cells of the green bacterium Chlorobium phaeovibrioides: a spectral hole burning study. Photosynth Res 41:205–210

    Article  CAS  Google Scholar 

  • Foidl M, Golecki JR et al (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55:109–114

    Article  CAS  Google Scholar 

  • Francke C, Amesz J (1997) Isolation and pigment composition of the antenna system of four species of green sulfur bacteria. Photosynth Res 52:137–146

    Article  Google Scholar 

  • Frese R, Oberheide U et al (1997) The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein. An absorption, linear dichroism, circular dichroism and Stark spectroscopy study. Photosynth Res 54:115–126

    Article  CAS  Google Scholar 

  • Golecki JR, Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148:236–241

    Article  CAS  Google Scholar 

  • Griebenow K, Holzwarth AR et al (1991) Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl. Biochim Biophys Acta 1058:194–202

    Article  CAS  Google Scholar 

  • Hildebrandt P, Tamiaki H et al (1994) Resonance raman spectroscopic study of metallochlorin aggregates. Implications for the supramolecular structure in chlorosomal BChl c antennae of green bacteria. J Phys Chem 98:2192–2197

    Article  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE et al (2005) The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth AR, Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study Photosynth Res 41:225–233

    Article  CAS  Google Scholar 

  • Holzwarth AR, Griebenow K et al (1992) Chlorosomes, photosynthetic antennae with novel self-organized pigment structures. J Photochem Photobiol A: Chem 65:61–71

    Article  CAS  Google Scholar 

  • Huber V, Katterle M et al (2005) Reversible self-organization of semisynthetic zinc chlorins into well-defined rod antennae. Angew Chem Int Ed 44:3147–3151

    Article  CAS  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2004) Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio and density functional results. J Comput Chem 25:123–138

    Article  PubMed  CAS  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2008) A theoretical model for excitation energy transfer in chlorosomes: lamellar and rod-shaped antenna structures. In Allen J (ed) Proceedings photosynthesis research 2007, Springer, Heidenberg

  • Linnanto J, Helenius VM et al (1998) Exciton interactions and femtosecond relaxation in chlorophyll a-water and chlorophyll a-dioxane aggregates. J Phys Chem A 102:4337–4349

    Article  CAS  Google Scholar 

  • Linnanto J, Korppi-Tommola JEI et al (1999) Electronic states, absorption spectrum and circular dichroism spectrum of the photosynthetic bacterial LH2 antenna of Rhodopseudomonas acidophila as predicted by exciton theory and semiempirical calculations. J Phys Chem B 103:8739–8750

    Article  CAS  Google Scholar 

  • Linnanto J, Oksanen JAI et al (2002) Exciton interactions in self-organised bacteriochlorophyll a aggregates. Phys Chem Chem Phys 4:3061–3070

    Article  CAS  Google Scholar 

  • Martinez-Planells A, Arellano JB et al (2002) Determination of topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90

    Article  PubMed  CAS  Google Scholar 

  • Martyiski T, Frackowiak D et al (1998) The orientation of bacteriochlorophyll c in green bacteria cells and cell fragments. J Photochem Photobiol B Biol 42:57–66

    Article  CAS  Google Scholar 

  • Matsuura K, Hirota M et al (1993) Spectral forms and orientation of bacteriochlorophylls c and a in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Photochem Photobiol 57:92–97

    Article  CAS  Google Scholar 

  • Miller M, Gillbro T et al (1993) Aqueous aggregates of bacteriochlorophyll c as a model for pigment organization in chlorosomes. Photochem Photobiol 57:98–102

    Article  CAS  Google Scholar 

  • Mizoguchi T, Hara K et al (2000) Structural transformation among the aggregate forms of bacteriochlorophyll c as determined by electronic-absorption and NMR spectroscopy: dependence on the stereoisomeric configuration and on the bulkiness of the 8-C side chain. Photochem Photobiol 71:596–609

    Article  PubMed  CAS  Google Scholar 

  • Montaño GA, Bowen BP et al (2003) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565

    PubMed  Google Scholar 

  • Moss GP, (1987) Nomenclature of tetrapyrroles (Recommendations 1986). Pure & Appl Chem 59:779–832

    Article  Google Scholar 

  • Novoderezhkin VI, Fetisova ZG (1996) Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: a spectral hole burning study. Biochem Mol Biol Int 40:243–252

    PubMed  CAS  Google Scholar 

  • Novoderezhkin V, Taisova A et al (2001) Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra. Chem Phys Letters 335:234–240

    Article  CAS  Google Scholar 

  • Nozawa T, Ohtomo K et al (1993) Structures and organization of bacteriochlorophyll c’s in chlorosomes from a new thermophilic bacterium Chlorobium tepidum. Bull Chem Soc Jpn 66:231–237

    Article  CAS  Google Scholar 

  • Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Oksanen JAI, Helenius VM et al (1996) Circular and linear dichroism of aggregates of chlorophyll a and chlorophyll b in 3-methylpentane and paraffin oil. Photochem Photobiol 64:356–362

    Article  CAS  Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51

    PubMed  CAS  Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75

    CAS  Google Scholar 

  • Oostergetel GT, Reus M et al (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cyro-electron microscopy. FEBS Lett 581(28):5435–5439

    PubMed  CAS  Google Scholar 

  • Pearlstein RM (1991) Theoretical interpretation of antenna spectra. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton

    Google Scholar 

  • Prokhorenko VI, Steensgaard DB et al (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120

    PubMed  CAS  Google Scholar 

  • Prokhorenko VI, Steensgaard DB et al (2003) Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Biophys J 85:3173–3186

    PubMed  CAS  Google Scholar 

  • Psencik J, Schaafsma TJ et al (1997) Fluorescence detected magnetic resonance of monomers and aggregates of bacteriochlorophylls of green sulfur bacteria Chlorobium sp. Photosynth Res 52:83–92

    Article  CAS  Google Scholar 

  • Psencík J, Ma Y-Z et al (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. Biophys J 84:1161–1179

    PubMed  Google Scholar 

  • Psencík J, Ikonen TP et al (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Psencík J, Arellano JB et al (2006) Internal structure of chlorosomes from brown-colored Chlorobium species and the role of carotenoids in their assembly. Biophys J 91:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Saga Y, Tamiaki H (2004) Comparison between chlorosomes containing bacteriochlorophyll-c and chlorosomes containing bacteriochlorophyll-d isolated from two substrains of green sulfur photosynthetic bacterium Chlorobium vibrioforme NCIB 8327. J Photochem Photobiol B Biol 75:89–97

    Article  CAS  Google Scholar 

  • Saga Y, Tamiaki H (2006a) Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. J Biosci Bioeng 102:118–123

    Article  PubMed  CAS  Google Scholar 

  • Saga Y, Wazawa T et al (2006b) Single supramolecule spectroscopy of natural and alkaline-treated chlorosomes from green sulfur photosynthetic bacteria. J Nanosci Nanotec 6:1750–1757

    Article  CAS  Google Scholar 

  • Saga Y, Akai S et al (2006c) Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes. Bioconjugate Chem 17:988–994

    Article  CAS  Google Scholar 

  • Savikhin S, Buck DR et al (1998) Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. FEBS Lett 430:323–326

    Article  PubMed  CAS  Google Scholar 

  • Shibata K, Saga Y et al (2006) Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria. Biophys J 91:3787–3796

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Saga Y et al (2007) Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus. Biochem 46:7062–7068

    Article  CAS  Google Scholar 

  • Shipman LL, Katz JJ (1977) Calculation of the electronic spectra of chlorophyll a––and bacteriochlorophyll a––water adducts. J Phys Chem 81:577–581

    Article  CAS  Google Scholar 

  • Somsen OJG, van Grondelle R et al (1996) Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophys J 71:1934–1951

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Golecki JR et al (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277

    Article  Google Scholar 

  • Staehelin LA, Golecki JR et al (1980) Subramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45

    Article  PubMed  CAS  Google Scholar 

  • Steensgaard DB, Matsuura K et al (1997) Changes in bacteriochlorophyll c organization during acid treatment of chlorosomes from Chlorobium tepidum. Photochem Photobiol 65:129–134

    Article  CAS  Google Scholar 

  • Steensgaard DB, van Walree CA et al (1999) Evidence for spatially separated bacteriochlorophyll c and bacteriochlorophyll d pools within the chlorosomal aggregates of the green sulfur bacterium Chlorobium limicola. Photosynth Res 59:231–241

    Article  CAS  Google Scholar 

  • Steensgaard DB, Wackerbarth H et al (2000) Diastereoselective control of bacteriochlorophyll e aggregation. 31-S-Bchl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104:10379–10386

    Article  CAS  Google Scholar 

  • Strouse CE, (1976) Structural studies related to photosynthesis: a model for chlorophyll aggregates in photosynthetic organisms. Prog Inorg Chem 21:159–177

    Article  CAS  Google Scholar 

  • Taisova AS, Keppen OI et al (2002) Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides. Photosynth Res 74:73–85

    Article  PubMed  CAS  Google Scholar 

  • Tamiaki H (1996a) Supramolecular structure in extramembraneous antennae of green photosynthetic bacteria. Coord Chem Rev 148:183–197

    Article  CAS  Google Scholar 

  • Tamiaki H, Amakawa M et al (1996b) Synthetic zinc and magnesium chlorin aggregates as models for supermolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochem Photobiol 63:92–99

    Article  CAS  Google Scholar 

  • Tamiaki H, Holzwarth AR et al (2003) A synthetic zinc chlorin aggregate as a model for the supramolecular antenna complexes in the chlorosomes of green bacteria. J Photochem Photobiol B Biol 15:355–360

    Article  Google Scholar 

  • Umetsu M, Hollander JG et al (2004) Magic-angle spinning nuclear magnetic resonance under ultrahigh field reveals two forms of intermolecular interaction within CH2Cl2-treated (31 R)-type bacteriochlorophyll c solid aggregates. J Phys Chem B 108:2726–2734

    Article  CAS  Google Scholar 

  • van Amerongen H, Vasmel H et al (1988) Linear dichroism of chlorosomes from Chloroflexus aurantiacus in compressed gels and electric fields. Biophys J 54:65–76

    PubMed  Google Scholar 

  • van Amerongen H, van Haeringen B et al (1991) Polarized fluorescence measurements on ordered photosynthetic antenna complexes. Chlorosomes of Chloroflexus aurantiacus and B800-B850 antenna complexes of Rhodobacter sphaeroides. Biophys J 59:992–1001

    PubMed  Google Scholar 

  • van Dorssen RJ, Vasmel H et al (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome. Photosynth Res 9:33–45

    Article  Google Scholar 

  • van Rossum B-J, Boender GJ et al (1998) Multidimensional CP-MAS 13C NMR of uniformly enriched chlorophyll. Spectrochimica Acta Part A 54:1167–1176

    Article  Google Scholar 

  • van Rossum B-J, Steensgaard DB et al (2001) A refined model on the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochem 40:1587–1595

    Article  CAS  Google Scholar 

  • Vassilieva EV, Stirewalt VL et al (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochem 41:4358–4370

    Article  CAS  Google Scholar 

  • Wang Z-Y, Marx G et al (1995) Morphology and spectroscopy of chlorosomes from Chlorobium tepidum by alcohol treatments. Biochim Biophys Acta 1232:187–196

    Article  Google Scholar 

  • Wechsler T, Suter F et al (1985) The complete amino acid sequency of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 181:173–178

    Article  CAS  Google Scholar 

  • Wu H-M, Rätsep M et al (2000) High-pressure and Stark hole-burning studies of chlorosome antennas from Chlorobium tepidum. Biophys J 79:1561–1572

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Taisova AS et al (2002) Light control over the size of an antenna unit building block as an efficient strategy for light harvesting in photosynthesis. FEBS Lett 512:129–132

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Ramakrishna BL et al (1995) Microscopic and spectroscopic studies of untreated and hexanol-treated chlorosomes from Chloroflexus aurantiacus. Biochim Biophys Acta 1232:197–207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha M. Linnanto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 9,631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linnanto, J.M., Korppi-Tommola, J.E.I. Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynth Res 96, 227–245 (2008). https://doi.org/10.1007/s11120-008-9304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9304-3

Keywords

Navigation