Skip to main content
Log in

Fitting light saturation curves measured using modulated fluorometry

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A blue diode PAM (Pulse Amplitude Modulation) fluorometer was used to measure rapid Photosynthesis (P) versus Irradiance (E) curves (P vs. E curves) in Synechococcus (classical cyanobacteria), Prochlorothrix (prochlorophyta), Chlorella (chlorophyta), Rhodomonas (cryptophyta), Phaeodactylum (bacillariophyta) Acaryochloris (Chl d/a cyanobacteria) and Subterranean Clover (Trifolium subterraneum, Papilionaceae, Angiospermae). Effective quantum yield (ΦPSII) versus irradiance curves could be described by a simple exponential decay function (ΦPSII = ΦPSII, maxe−kE) although Log/Log transformation was sometimes found to be necessary to obtain the best fits. Photosynthesis was measured as relative Electron Transport Rate (rETR) standardised on a chlorophyll basis. P versus E curves were fitted to the waiting-in-line function (an equation of the form P = Pmax · k · E · e−kE) allowing half-saturating and optimal irradiances (Eoptimum) to be estimated. The second differential of the equation shows that at twice optimal light intensities, there is a point of inflection in the P versus E curve. Photosynthesis is inhibited 26.4% at this point of inflection. The waiting-in-line model was found to be a very good descriptor of photosynthetic light saturation curves and superior to hyperbolic functions with an asymptotic saturation point (Michaelis–Menten, exponential saturation and hyperbolic tangent). The exponential constants (k) of the ΦPSII versus E and P versus E curves should be equal because rETR is directly proportional to ΦPSII × E. The conventionally calculated Non-Photochemical Quenching (NPQ) in Synechococcus was not significantly different to zero but NPQ versus E curves for the other algae could be fitted to an exponential saturation model. The kinetics of NPQ does not appear to be related to the kinetics of ΦPSII or rETR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

E:

Irradiance (mol m−2 s−1) PAR

ΦPSII :

Effective quantum yield (measured using standard settings)

rETR:

Relative electron transport rate (measured using standard settings)

NPQ:

Non-photochemical quenching

References

  • Allen MM (1973) Methods for cyanophyceae. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, UK, pp 127–138

    Google Scholar 

  • Bailey S, Mann NH, Robinson C, Scalan DJ (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579:275–280

    Article  PubMed  CAS  Google Scholar 

  • Beer S, Axelsson L (2004) Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. Eur J Phycol 39:1–7

    Article  Google Scholar 

  • Beer S, Larsson C, Poryan O, Axelsson L (2000) Photosynthetic rates of Ulva (Chlorophyta) measured by pulse amplitude modulated (PAM) fluorometry. Eur J Phycol 35:69–74

    Article  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Burger-Weirsma T, Post AF (1989) Functional analysis of the photosynthetic apparatus of Prochlorothrix hollandica (Prochlorales), a chlorophyll b containing prokaryote. Plant Physiol 91:770–774

    Google Scholar 

  • Cadoret JC, Demouliere R, Lavaud J, van Gorkom HJ, Houmard J, Etienne AL (2004) Dissipation of excess energy triggered by blue light in cyanobacteria with CP43’ (IsiA). Biochim Biophys Acta 1659:100–104

    Article  PubMed  CAS  Google Scholar 

  • Campbell D, Hurry V, Clarke AD, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Molec Biol Rev 62:667–683

    CAS  Google Scholar 

  • Chalker BE (1980) Modelling light saturation curves for photosynthesis: an exponential function. J Theor Biol 84:205–213

    Article  PubMed  CAS  Google Scholar 

  • Chalker BE (1981) Simulating light saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol 63:135–141

    Article  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005a) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579:1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Telfer A, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005b) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJ, USA

  • Franklin LA, Badger MR (2001) A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectroscopy. J Phycol 37:756–767

    Article  CAS  Google Scholar 

  • Frenette J-J, Demers S, Legendre L, Dodson J (1993) Lack of agreement among models for estimating the photosynthetic parameters. Limnol Oceanogr 38:679–687

    Article  CAS  Google Scholar 

  • Gantt E, Cunningham FX (2001) Algal pigments. Encyclopedia of Life Sciences, John Wiley Publ., http://www.els.net [Accessed 22 Feb 2008]

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gloag RS, Ritchie RJ, Chen M, Larkum AWD, Quinnell RG (2007) Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll d-containing oxyphotobacterium Acaryochloris marina Miyashita. Biochim Biophys Acta-Bioenergetics 1767:127–135

    Article  CAS  Google Scholar 

  • Harrison WG, Platt T (1986) Photosynthesis–Irradiance relationships in polar and temperate phytoplankton populations. Polar Biol 5:153–164

    Article  Google Scholar 

  • Hartig P, Wolfstein K, Lippemeier S, Colijn F (1998) Photosynthetic activity of natural microbenthos populations measured by fluorescence (PAM) and 14C-tracer: a comparison. Mar Ecol Prog Ser 166:53–62

    Article  Google Scholar 

  • Holt NE, Fleming GR, Niyogi NK (2004) Toward an understanding of the mechanism of non-photochemical quenching in green plants. Biochemistry 43:8281–8289

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Nat Acad Sci USA 95:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    CAS  Google Scholar 

  • Johnson ML, Faunt LM (1992) Parameter estimation by least squares methods. Methods Enzymol 210:1–37

    Article  PubMed  CAS  Google Scholar 

  • Knapp AK, Carter GA (1998) Variability in leaf optical properties among 26 species from a broad range of habitats. Am J Bot 85:940–946

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Molec Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD, Douglas SE, Raven JA (eds) (2003) Photosynthesis in algae. Kluwer Academic, Dordrecht, The Netherlands, pp 480

  • Longstaff BJ, Kildea T, Runcie JW, Dennison WC, Hurd C, Kanna T, Raven JA, Larkum AWD (2002) An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynth Res 74:281–293

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Melis A (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Philos Trans R Soc Lond Ser B 323:397–409

    Article  CAS  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial-cyanobacterial small-subunit rRNA gene. Proc Nat Acad Sci USA 102:850–855

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW (1999) The thylacoid membranes of cyanobacteria: structure, dynamics and function. Aust J Plant Physiol 26:671–677

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Goto T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M, Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556:95–98

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chilaa M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina Gen Et Sp Nov (Cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    Article  CAS  Google Scholar 

  • Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116:259–275

    Article  Google Scholar 

  • Partensky F, Hoepffner N, Li WKW, Ulloa O, Vaulot D (1993) Photoacclimation of Prochlorococcus sp. (Prochlorophyta) Strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol 101:285–296

    PubMed  CAS  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  PubMed  CAS  Google Scholar 

  • Ritchie RJ, Prvan T (1996a) A simulation study on designing experiments to measure the K m and V max of Michaelis–Menten Kinetics curves. J Theor Biol 178:239–254

    Article  CAS  Google Scholar 

  • Ritchie RJ, Prvan T (1996b) Current statistical methods for estimating the K m and V max of Michaelis–Menten Kinetics. Biochem Educ 24:196–206

    Article  Google Scholar 

  • Runcie JW, Durako MJ (2004) Among-shoot variability and leaf-specific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. Aquatic Bot 80:209–220

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995a) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis ecological studies, vol. 100, Springer-Verlag, Berlin, pp 49–70

    Google Scholar 

  • Schreiber U, Endo T, Mi H-L, Asada K (1995b) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Google Scholar 

  • Schreiber U, Gademann R, Ralph PJ, Larkum AWD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38:945–951

    CAS  Google Scholar 

  • Schreiber U, Gademann R, Bird P, Ralph PJ, Larkum AWD, Kühl M (2002) Apparent Light requirement of photosynthesis upon rehydration of desiccated beachrock microbial mats. J Phycol 38:125–134

    Article  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150

    Article  Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    Article  PubMed  CAS  Google Scholar 

  • Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, London

    Google Scholar 

  • Ting CS, Owens TC (1993) Photochemical and nonphotochemical fluorescence quenching processes in the diatom Phaeodactylum tricornutum. Plant Physiol 101:1323–1330

    PubMed  CAS  Google Scholar 

  • Ulstrup KE, Ralph PJ, Larkum AWD, Kuhl M (2006) Intracolonial variability in light acclimation of zooxanthellae in coral tissues of Pocillopora damicornis. Marine Biol 149:1325–1335

    Article  Google Scholar 

  • van der Staay GWM, Yurkova N, Green BR (1998) The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Molec Biol 36:709–716

    Article  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovskya D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  PubMed  CAS  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr John W. Runcie (University of Sydney) for his interest in this study and helpful comments on the paper. Dr Rosanne Quinnell and Prof A. W. D. Larkum kindly provided laboratory space at The University of Sydney and encouragement for the study. Dr Min Chen (University of Sydney) kindly provided starter cultures of Acaryochloris marina and Prochlorothrix hollandica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Ritchie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 1547 kb)

(DOC 83 kb)

(DOC 27 kb)

(PPT 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.J. Fitting light saturation curves measured using modulated fluorometry. Photosynth Res 96, 201–215 (2008). https://doi.org/10.1007/s11120-008-9300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9300-7

Keywords

Navigation