Skip to main content
Log in

Engineering model proteins for Photosystem II function

  • review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Our knowledge of Photosystem II and the molecular mechanism of oxygen production are rapidly advancing. The time is now ripe to exploit this knowledge and use it as a blueprint for the development of light-driven catalysts, ultimately for the splitting of water into O2 and H2. In this article, we outline the background and our approach to this technological application through the reverse engineering of Photosystem II into model proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

BRC:

Bacterial reaction center

BFR:

Bacterioferritin

Chl:

Chlorophyll

CoQ0 :

Coenzyme Q without the hydrophobic tail

Cyt:

Cytochrome

Em:

Midpoint redox potential

H-bond:

Hydrogen bond

LH(C):

Light harvesting (complex)

M4 :

Tetranuclear manganese/calcium cluster

P:

Reaction center chlorophyll complex

PSII(I):

Photosystem II (I)

Q:

Quinone

Rubisco:

Ribulose-1,5-bisphosphate carboxylase

Y:

Redox-active tyrosine

References

  • Amunts A, Droy O, Nelson N (2007) The structure of plant Photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63

    Article  PubMed  CAS  Google Scholar 

  • Arnsano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker PD, Fersht AR (1999) The solution structure of oxidized Escherichia coli cytochrome b 562. Biochemistry 38:8657–8670

    Article  Google Scholar 

  • Barker PD, Nerou EP, Cheesman MR, Thomson AJ, de Oliveira P, Hill HA (1996) Bis-methionine ligation to heme iron in mutants of cytochrome b562 1: spectroscopic and electrochemical characterization of the electronic properties. Biochemistry 35:13618–13626

    Article  PubMed  CAS  Google Scholar 

  • Calvin M, Benson AA (1948) Path of carbon in photosynthesis. Science 107:476–480

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman MR, Thomson AJ, Greenwood C, Moore GR, Kadir F (1990) Bis-methionine axial ligation of haem in bacterioferritin from Pseudomononas aeruglinosa. Nat Lett 346:771–773

    Article  Google Scholar 

  • Chen M, Eggink LL, Hoober JK, Larkum AWD (2005) Influence of structure on binding chlorophylls to peptide ligands. J Am Chem Soc 127:2052–2053

    Article  PubMed  CAS  Google Scholar 

  • Chen-Barrett Y, Harrison PM, Treffry A, Quail MA, Arosio P, Sabtanbriui P, Chasteen ND (1995) Tyrosyl radical formation during the oxidative deposition of iron in human apoferritin. Biochemistry 34:7847–7853

    Article  PubMed  CAS  Google Scholar 

  • Conlan BHW, Wydrzynski T (2007) Designing artificial photosynthesis: production of a light-activated metallo protein. In: Allen JF, Osmod B, Golbeck JH, Gantt E (eds) Proceedings of the 14th congress on Photosynthesis. Springer (in press)

  • Dautant A, Meyer J-B, YarivJ, Precigoux G, Sweet RM, Kalb AJ, Frolow F (1998) Structure of a monoclonic crystal form of cytochrome b1 (bacterioferritin from E. coli). Acta Cryst D54:1–24

    Google Scholar 

  • DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A. (1999) De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem 68:779–819

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 246:429–457

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Britt RD (2005) The redox-active tyrosines YZ and YD. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 753–775

    Google Scholar 

  • Discher BM, Koder RL, Moser CC, Dutton PL (2003) Hydrophilic to amphiphilic design in redox protein maquettes. Curr Opin Chem Biol 7:741–748

    Article  PubMed  CAS  Google Scholar 

  • Discher BM, Noy D, Strzalka J, Shixin Y, Moser CC, Lear JD, Blaise JK, Dutton PL (2005) Design of amphiphilic protein maquettes: controlling assembly, membrane insertion and cofactor interactions. Biochemistry 44:12329–12343

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275:9087–9090

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson T, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Frolow F, Kalb (Gilboa) AJ, Yariv J (1994) Structure of a unique twofold symmetric haem binding site. Nat Struct Biol 1:453–460

    Article  PubMed  CAS  Google Scholar 

  • Gaffron H, Fager EW, Rosenberg JL (1951) Intermediates in photosynthesis: formation and transformation of phosphoglyceric acid. Exp Plant Physiol 2:87–114

    Article  CAS  Google Scholar 

  • Gibney BR, Dutton PL (2001) De novo design and synthesis of heme proteins. Adv Inorg Chem 51:409–455

    Article  CAS  Google Scholar 

  • Gibney BR, Mulholland SE, Rabanal F, Dutton PL (1996) Ferridoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci USA 93:15041–15046

    Article  PubMed  CAS  Google Scholar 

  • Gibney BR, Rabanal F, Skalicky JJ, Wand AJ, Dutton LP (1999) Iterative protein design. J Am Chem Soc 121:4952–4960

    Article  CAS  Google Scholar 

  • Hamada K, Bethge PH, Mathews FS (1995) Refined structure of cytochrome b562 from Escherichia coli. J Mol Biol 247:947–962

    Article  PubMed  CAS  Google Scholar 

  • Hay S, Wydrzynski T (2005) Conversion of the Escherichia coli cytochrome b562 to an archtype cytochrome b: a mutant with bis-histidine ligation of heme iron. Biochemistry 44:431–439

    Article  PubMed  CAS  Google Scholar 

  • Hay S, Wallace BB, Smith TA, Ghiggino KP, Wydrzynski T (2004) Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer. Proc Natl Acad Sci USA 101:17675–17680

    Article  PubMed  CAS  Google Scholar 

  • Hay S, Westerlund K, Tommos C (2005) Moving phenol hydroxyl group from the surface to the interior of a protein: effects on the phenol potential and pKA . Biochemistry 44:11891–118902

    Article  PubMed  CAS  Google Scholar 

  • Hay S, Westerlund K, Tommos C (2007) Redox characteristics of a de novo quinone protein. J Phys Chem 111:3488–3495

    CAS  Google Scholar 

  • Hughes JL, Razeghifard R, Logue M Oakley A, Wydezynski T, Krausz E (2006) Magneto-optic spectroscopy of a protein tetramer binding two exciton-coupled chlorophylls. J Am Chem Soc 128:3649–3658

    Article  PubMed  CAS  Google Scholar 

  • Ingenhousz J (1798) Über die Nahrung der Pflanzen und die Düngung des Bodens. Voigt, Magazin, I (Hft.2):97–105

  • Johnson ET, Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41:6483–6494

    Article  PubMed  CAS  Google Scholar 

  • Jordon P, Fromme P, Witt HT, Klukas O, Saenger W, Krauβ (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  Google Scholar 

  • Kalman L, LoBrutto R, Allen JC, Williams JP (1999) Modified reaction centers oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699

    Article  Google Scholar 

  • Kalman L, Williams JC, JP Allen (2005) Mimicking the properties of photosystem II in bacterial reaction centers. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 715–727

    Google Scholar 

  • Kalman L, LoBrutto R, Williams JC, Allen JP (2006) Iron as a bound secondary electron donor in modified bacterial reaction centers. Biochemistry 45:13869–13874

    Article  PubMed  CAS  Google Scholar 

  • Kessler E, Arthur W, Brugger JE (1957) Influence of manganese on delayed light emission, fluorescence, photochemistry, and photosynthesis in algae. Arch Biochem Biophys 71:326–335

    Article  PubMed  CAS  Google Scholar 

  • Koder RL, Dutton PL (2006) Intelligent design: the de novo engineering of proteins with specified functions. Dalton Trans 3045–3051

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–969

    Article  PubMed  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) The structure of a plant Photosystem I super-complex at 3.4 Å resolution. Science 302:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Laplaza CE, Holm RH (2001) Helix-loop-helix peptides as scaffolds for the construction of bridged metal assemblies in proteins: the spectroscopic A-cluster structure in carbon monoxide dehydrogenase. J Am Chem Soc 123:10255–10264

    Article  PubMed  CAS  Google Scholar 

  • Le Brun NE, Andrews SC, Guest JR, Harrison OM, Moore GR, Thomson AJ (1995) Identification of the ferroxidase centre of E. coli bacterioferritin. Biochem J 312:385–392

    PubMed  CAS  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  PubMed  CAS  Google Scholar 

  • Li W-W, Heinze J, Haehnel W (2005) Site-specific binding of quinones to proteins through thiol addition-elimination reactions. J Am Chem Soc 127:6140–6141

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang J, Kuang T, Zhang J, Gul L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll A, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Lubitz W (1991) EPR and ENDOR studies of chlorophyll cation and anion radicals. In: Scheer H (ed) Chlorophyll. CRC Press, Inc., Boca Raton, pp 903–944

    Google Scholar 

  • Lubitz W, Lendzian F, Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35:313–320

    Article  PubMed  CAS  Google Scholar 

  • Maglio O, Nastri F, Calhoun JR, Lahr H Wade H, Pavone V, DeGrado WF (2005) Artificial di-iron proteins: solution characterization of four helix bundles containing two distinct types of inter-helical loops. J Biol Inorg Chem 10:539–549

    Article  PubMed  CAS  Google Scholar 

  • Magnuson A, Styring S (2005) Understanding photosystem II function by artificial photosynthesis. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 753–775

    Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ, Isaacs NM (2001) The crystallographic structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain. Biochemistry 40:8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW, Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides: minimal requirements for subunit formation. Biochemistry 37:3411–3417

    Article  PubMed  CAS  Google Scholar 

  • Mennenga A, Gärtner W, Lubitz W, Görner H (2006) Effects of non-covalently bound quinones on the ground and triplet states of zinc-chlorins in solution and bound to de novo synthesized peptides. Phys Chem Chem Phys 8:5444–5453

    Article  PubMed  CAS  Google Scholar 

  • Moffet DA, Hecht (2001) De novo proteins from combinatorial libraries. Chem Rev 101:3191–3203

    Article  PubMed  CAS  Google Scholar 

  • Moore GR, Williams RJP, Peterson J, Thomson AJ, Mathews FS (1985) A spectroscopic investigation of the structure and redox properties of Escherichia coli cytochrome b652. Biochim Biophys Acta 829:83–96

    PubMed  CAS  Google Scholar 

  • Moore TA, Moore AL, Gust D (2002) The design and synthesis of artificial photosynthetic antennas, reaction centers and membranes. Phil Trans Roy Soc London 257:1481–1498

    Google Scholar 

  • Narvatz AJ, Kalman L, LoBrutto R, Allen JP, Williams JC (2002) Influence of the protein environment on the properties of a tyrosyl radical in reaction centers from Rhodobacter sphaeriodes. Biochemistry 41:15253–15258

    Article  CAS  Google Scholar 

  • Noy D, Dutton PL (2006) Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Biochemistry 45:2103–2113

    Article  PubMed  CAS  Google Scholar 

  • Noy D, Discher BM, Rubtsov IV, Hochstrasser RM, Dutton PL (2005) Design of amphiphilic protein maquettes: enhancing maquette functionality through binding of extremely hydrophobic cofactors to lipophilic domains. Biochemistry 44:12344–12354

    Article  PubMed  CAS  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  PubMed  CAS  Google Scholar 

  • Priestley J (1772) Observations on different kinds of air. Phil Trans Roy Soc London 62:147–264

    Article  Google Scholar 

  • Rabanal F, Gibney BR, DeGrado WF, Moser CC, Dutton Pl (1996) Engineering photosynthesis: synthetic redox proteins. Inorg Chem Acta 243:213–218

    Article  CAS  Google Scholar 

  • Rabinowitch EI (1945) Photosynthesis and related topics, vol I. Wiley (Interscience), New York, pp 281–299

    Google Scholar 

  • Rabinowitch EI (1951) Photosynthesis and related topics, vol II, part 1. Wiley (Interscience), New York

    Google Scholar 

  • Rabinowitch EI (1956) Photosynthesis and related topics, vol II, part 2. Wiley (Interscience), New York

    Google Scholar 

  • Rau HK, Snigula H, Struck A, Robert B, Scheer H, Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268:3284–3295

    Article  PubMed  CAS  Google Scholar 

  • Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X, Williams JC, Allen JP, Lubitz W (1995) ENDOR-Studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry 34:8130–8143

    Article  PubMed  CAS  Google Scholar 

  • Razeghifard R, Wydrzynski (2003) Binding of Zn-chlorin to a synthetic four-helix bundle peptide through histidine ligation. Biochemistry 42:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Razeghifard R, Wallace BD, Pace RJ, Wydrzynski T (2007) Creating functional artificial proteins. Curr Protein Pept Sci 8:3–18

    Article  PubMed  CAS  Google Scholar 

  • Robinson Cr, Liu Y, Thomson AJ, Sturtevant JM, Sliger SG (1997) Eneregetics of heme binding to native and denatured cytochrome b562. Biochemstry 36:16141–16146

    Article  Google Scholar 

  • Ruben S, Randall M, Kamen MD, Hyde JL (1941) Heavy oxygen (18O) as a tracer in the study of photosynthesis. J Am Chem Soc 63:877–878

    Article  CAS  Google Scholar 

  • Satoh H, Nakayama K, Okada M (1998) Molecular cloning and functional expression of a water-soluble chlorophyll protein, a putative carrier of chlorophyll molecules in cauliflower. J Biol Chem 273:30568–30575

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Lindqvist Y, Brändén C-I, Lorimer G (1986) Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9 Å resolution. EMBO J 5:3409–3415

    PubMed  CAS  Google Scholar 

  • Senebier J (1782) Mémoires physicochimiques sur la l’influence de la lumiere solaire pour modifier les étres de trios régbes, surtout ceux dy régne végérl. 3 vols. Chirol, Geneva

  • Sharp RE, Moser CC, Rabanal F, Dutton PL (1998) Design, synthesis and characterization of photoactivable flavocytochrome molecular maquette. Proc Natl Acad Sci USA 95:10465–10470

    Article  PubMed  CAS  Google Scholar 

  • Shifman JJ, Gibney BR, Sharp RE, Dutton PL (2000) Heme redox potential control in de novo designed four-α-helix bundle proteins. Biochemistry 39:14813–14821

    Article  PubMed  CAS  Google Scholar 

  • Smith JMA, Smith Quirk AV, Plank RWH, Diffin FM, Ford GC, Harrison PM (1988) The identity of E. coli bacterioferritin and cytochrome b1. Biochem J 255:757–740

    Google Scholar 

  • Springs SL, Bass SE, Bowman G, Nodelman I, Schutt CE, McLenden GL (2002) A multigeneration analysis of cytochrome b562 redox variants: evolutionary strategies for modulating redox potential revealed using a library approach. Biochemistry 41:4321–4328

    Article  PubMed  CAS  Google Scholar 

  • Taylor TC, Backlund A, Bjorhall K, Spreitzer RJ, Andersson I (2001) First crystal structure of Rubisco from the green alga, Chlamydomonas reinhardtii. J Biol Chem 276:48159–48164

    PubMed  CAS  Google Scholar 

  • Thielges M, Uyeda G, Canaarap-Artigas A, Kalman L, Williams JC, Allen JP (2005) Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of Photosystem II. Biochemistry 44:7389–7394

    Article  PubMed  CAS  Google Scholar 

  • Tronud DE, Schmid MF, Mathews BW (1986) Structure and amino acid sequence of a bacteriochlorophyll protein from Prosthecochloris aestuarii at 1.9 Å. J Mol Biol 188:443–454

    Article  Google Scholar 

  • Wade H, Stayrook SE, DeGrado WF (2006) The structure of a designed di-iron (III) protein: implications for cofactor stabilization and catalysis. Angew Chem Int Ed 45:4951–4954

    Article  CAS  Google Scholar 

  • Westerlund K, Berry BW, Privet HK, Tommos C (2005) Exploring amino-acid radical chemistry: protein engineering and de novo design. Biochim Biophys Acta 1707:103–116

    Article  PubMed  CAS  Google Scholar 

  • Whittaker JW, Whittaker MM (2003) Outer sphere mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster core. Eur J Biochem 270:1102–1116

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:15403–15407

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Satoh K (eds) (2005) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht

Download references

Acknowledgements

The authors thank Les Dutton and Wolfgang Lubitz for their encouragement and support throughout the development of this project. Financial assistance was provided by a grant from the Australian Research Council (ARC DP0450421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Wydrzynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wydrzynski, T., Hillier, W. & Conlan, B. Engineering model proteins for Photosystem II function. Photosynth Res 94, 225–233 (2007). https://doi.org/10.1007/s11120-007-9271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9271-0

Keywords

Navigation