Four-wave mixing signals from β-carotene and its = 15 homologue

Abstract

The third-order nonlinear optical responses of β-carotene and its homologue having a conjugation-double bond = 15 have been investigated using sub-20 fs ultra-short optical pulses in order to clarify the dissipation processes of excess energy. Using the four-wave mixing spectroscopy, we observed a clear coherent oscillation with a period of a few tens of femtoseconds. The spectral density of these molecules was estimated that allowed the theoretical linear and nonlinear optical signals to be directly compared with the experimental data. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit. We show that the memory of the vibronic coherence generated upon the excitation into the S2 state is lost via the relaxation process including the S1 state. The vibronic decoherence lifetime of the system was estimated to be 1 ps, which is about 5 times larger than the life time of the S2 state (∼150 fs) determined in previous studies. The role of coherence and the efficient energy transfer in the light-harvesting antenna complexes are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

BBO:

β-BaB2O4

CW:

Continuous wave

FWM:

Four-wave mixing

LH2:

Light-harvesting 2

NOPA:

Noncollinear optical parametric amplifier

Rps. acidophila :

Rhodopseudomonas acidophila

Rb. sphaeroides :

Rhodobacter sphaeroides

THF:

Tetrahydrofuran

References

  1. Agarwal R, Rizvi AH, Prall BS, Olsen JD, Hunter CN, Fleming GR (2002) Nature of disorder and inter-complex energy transfer in LH2 at room temperature: A three pulse photon echo peak shift study. J Phys Chem A 106:7573–7578

    Article  CAS  Google Scholar 

  2. Amerongen HV, Valkunas L, Grondelle RV (2000) Photosynthetic excitons. World Scientific Pub Co Inc, Singapore, New Jersey, London, Hong Kong

    Google Scholar 

  3. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Inc, Oxford

    Google Scholar 

  4. Cerullo G, Lanzani G, Zavelani-Rossi M, De Silvestri S (2001) Early events of energy relaxation in all-trans-β-carotene following sub-10 fs optical-pulse excitation. Phys Rev B 63:241104

    Article  CAS  Google Scholar 

  5. Dexheimer SL, Wang Q, Peteanu LA, Pollard WT, Mathies RA, Shank CV (1992) Femtosecond impulsive excitation of nonstationary vibrational-states in bacteriorhodopsin. Chem Phys Lett 188:61–66

    Article  CAS  Google Scholar 

  6. Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    PubMed  CAS  Google Scholar 

  7. Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J, Bautista J (1997) On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl Chem 69:2117–2124

    Article  CAS  Google Scholar 

  8. Freer A, Prince S, Sauer K, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell R, Isaacs NW (1996) Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4:449–462

    PubMed  Article  CAS  Google Scholar 

  9. Hashimoto H, Koyama Y (1989a) The C=C stretching Raman lines of β-carotene isomers in the S1 state as detected by pump-probe resonance Raman-spectroscopy. Chem Phys Lett 154:321–325

    Article  CAS  Google Scholar 

  10. Hashimoto H, Koyama Y (1989b) Raman-spectra of all-trans-β-carotene in the S-state and T1-state produced by direct photoexcitation. Chem Phys Lett 163:251–256

    Article  CAS  Google Scholar 

  11. Hashimoto H, Yanagi K, Yoshizawa M, Polli D, Cerullo G, Lanzani G, De Silvestri S, Gardiner AT, Cogdell RJ (2004) The very early events following photoexcitation of carotenoids. Arch Biochem Biophys 430:61–69

    PubMed  Article  CAS  Google Scholar 

  12. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzkus M (2002) Quantum control of energy flow in light harvesting. Nature 417:533–535

    PubMed  Article  CAS  Google Scholar 

  13. Hornung T, Skenderovic H, Motzkus M (2005) Observation of all-trans-β-carotene wavepacket motion on the electronic ground and excited dark state using degenerate four-wave mixing (DFWM) and pump-DFWM. Chem Phys Lett 402:283–288

    Article  CAS  Google Scholar 

  14. Jimenez R, Salazar G, Yin J, Joo T, Romesberg FE (2004) Protein dynamics and the immunological evolution of molecular recognition. Proc Natl Acad Sci USA 101:3803–3808

    PubMed  Article  CAS  Google Scholar 

  15. Joo TH, Jia YW, Yu JY, Jonas DM, Fleming GR (1996) Dynamics in isolated bacterial light harvesting antenna (LH2) of Rhodobacter sphaeroides at room temperature. J Phys Chem A 100:2399–2409

    Article  CAS  Google Scholar 

  16. Kobayashi T, Saito T, Ohtani H (2001) Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414:531–534

    PubMed  Article  CAS  Google Scholar 

  17. Koepke J, Hu XC, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4:581–597

    PubMed  Article  CAS  Google Scholar 

  18. Konradi J, Singh AK, Scaria AV, Materny A (2006) Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy. J Raman Spectrosc 37:697–704

    Article  CAS  Google Scholar 

  19. Kosumi D, Komukai M, Hashimoto H, Yoshizawa M (2005) Ultrafast dynamics of all-trans-β-carotene explored by resonant and nonresonant photoexcitations. Phys Rev Lett 21:213601

    Article  CAS  Google Scholar 

  20. Koyama Y, Rondonuwu FS, Fujii R, Watanabe Y (2004) Light-harvesting function of carotenoids in photo-synthesis: the roles of the newly found 11B u state. Biopolymers 74:2–18

    PubMed  Article  CAS  Google Scholar 

  21. Lanzani G, Cerullo G, Brabec C, Sariciftci NS (2003) Time domain investigation of the intrachain vibrational dynamics of a prototypical light-emitting conjugated polymer. Phys Rev Lett 90:047402

    PubMed  Article  CAS  Google Scholar 

  22. Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80:923–930

    PubMed  CAS  Article  Google Scholar 

  23. McCamant DW, Kim JE, Mathies RA (2002) Vibrational relaxation in β-carotene probed by picosecond Stokes and anti-stokes resonance Raman spectroscopy. J Phys Chem A 106:6030–6038

    PubMed  Article  CAS  Google Scholar 

  24. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  25. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York, Oxford

    Google Scholar 

  26. Nagae H, Kuki M, Zhang JP, Sashima T, Mukai Y, Koyama Y (2000) Vibronic coupling through the in-phase, C=C stretching mode plays a major role in the 2A g to 1A g internal conversion of all-trans-β-carotene. J Phys Chem A 104:4155–4166

    Article  CAS  Google Scholar 

  27. Nibbering ETJ, Elsaesser T (2004) Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem Rev 104:1887–1914

    PubMed  Article  CAS  Google Scholar 

  28. Noguchi T, Hayashi H, Tasumi M, Atkinson GH (1991) Solvent effects of the Ag C=C stretching mode in the 21A g excited-state of beta-carotene and 2 derivatives—picosecond time-resolved resonance Raman-spectroscopy. J Phys Chem A 95:3167–3172

    Article  CAS  Google Scholar 

  29. Onaka K, Fujii R, Nagae H, Kuki M, Koyama Y, Watanabe Y (1999) The state energy and the displacements of the potential minima of the 2A g state in all-trans-β-carotene as determined by fluorescence spectroscopy. Chem Phys Lett 315:75–81

    Article  CAS  Google Scholar 

  30. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Rev 104:2021–2072

    PubMed  Article  CAS  Google Scholar 

  31. Polívka T, Zigmantas D, Frank HA, Bautista JA, Herek JL, Koyama Y, Fujii R, Sundström V (2001) Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene. J Phys Chem B 105:1072–1080

    Article  CAS  Google Scholar 

  32. Pollard WT, Dexheimer SL, Wang Q, Peteanu LA, Shank CV, Mathies RA (1992) Theory of dynamic absorption-spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman-spectroscopy of bacteriorhodopsin. J Phys Chem 96:6147–6158

    Article  CAS  Google Scholar 

  33. Prokhorenko VI, Nagy AM, Waschuk SA, Brown LS, Birge RR, Miller RJD (2006) Coherent control of retinal isomerization in bacteriorhodopsin. Science 313:1257–1261

    PubMed  Article  CAS  Google Scholar 

  34. Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ, atanabe Y (2004) The role of the 11B -u state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett 390:314–322

    Article  CAS  Google Scholar 

  35. Saito S, Tasumi M (1983) Normal-coordinate analysis of beta-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectrosc 14:310–321

    Article  CAS  Google Scholar 

  36. Saito S, Tasumi M, Eugster CH (1983) Resonance Raman-spectra (5,800–40 cm−1) of all-trans and 15-cis isomers of beta-carotene in the solid-state and in solution—measurements with various laser lines from ultraviolet to red. J Raman Spectrosc 14:299–309

    Article  CAS  Google Scholar 

  37. Stenger J, Madsen D, Hamm P, Nibbering ETJ, Elsaesser T (2002) A photon echo peak shift study of liquid water. J Phys Chem A 106:2341–2350

    Article  CAS  Google Scholar 

  38. Walla PJ, Linden PA, Hsu CP, Scholes GD, Fleming GR (2000a) Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Proc Natl Acad Sci USA 97:10808–10813

    PubMed  Article  CAS  Google Scholar 

  39. Walla PJ, Yom J, Krueger BP, Fleming GR (2000b) Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids. J Phys Chem B 104:4799–4806

    Article  CAS  Google Scholar 

  40. Walla PJ, Linden PA, Ohta K, Fleming GR (2002) Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution: efficient car S1 → Chl electronic energy transfer via hot S1 states? J Phys Chem A 106:1909–1916

    Article  CAS  Google Scholar 

  41. Watanabe J, Kinoshita S, Kushida T (1987) Effects of nonzero correlation time of system reservoir interaction on the excitation profiles of 2nd-order optical processes in β-carotene. J Chem Phys 87:4471–4477

    Article  CAS  Google Scholar 

  42. Wohlleben W, Buckup T, Herek JL, Motzkus M (2005) Coherent control for spectroscopy and manipulation of biological dynamics. ChemPhysChem 6:850–857

    PubMed  Article  CAS  Google Scholar 

  43. Xu QH, Fleming GR (2001) Isomerization dynamics of 1,1′-diethyl-4,4′-cyanine (1144C) studied by different third-order nonlinear spectroscopic measurements. J Phys Chem A 105:10187–10195

    Article  CAS  Google Scholar 

  44. Xu QH, Scholes GD, Yang M, Fleming GR (1999) Probing solvation and reaction coordinates of ultrafast photoinduced electron-transfer reactions using nonlinear spectroscopies: Rhodamine 6G in electron-donating solvents. J Phys Chem A 103:10348–10358

    Article  CAS  Google Scholar 

  45. Xu QH, Ma YZ, Fleming GR (2002) Different real and imaginary components of the resonant third-order polarization revealed by optical heterodyne detected transient grating spectroscopic studies of crystal violet: model and experiment. J Phys Chem A 106:10755–10763

    Article  CAS  Google Scholar 

  46. Yan YJ, Mukamel S (1991) Photon-echoes of polyatomic-molecules in condensed phases. J Chem Phys 94:179–190

    Article  CAS  Google Scholar 

  47. Yang M, Agarwal R, Fleming GR (2001) The mechanism of energy transfer in the antenna of photosynthetic purple bacteria. J Photochem Photobiol A-Chem 142:107–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Grant-in-aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (Grants No. 17204026, No. 17654083, No. 18340091, and No. 18654074). HH and MS thank for the financial support from SICP/JST. HH also acknowledges the support from PRESTO/JST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Sugisaki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugisaki, M., Fujiwara, M., Yanagi, K. et al. Four-wave mixing signals from β-carotene and its = 15 homologue. Photosynth Res 95, 299–308 (2008). https://doi.org/10.1007/s11120-007-9265-y

Download citation

Keywords

  • Nonlinear spectroscopy
  • Four-wave mixing
  • β-carotene
  • Brownian oscillator model