Skip to main content
Log in

Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective

  • Historical Corner
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Historic discoveries and key observations related to Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase), from 1947 to 2006, are presented. Currently, around 200 papers describing Rubisco research are published each year and the literature contains more than 5000 manuscripts on the subject. While trying to ensure that all the major events over this period are recorded, this analysis will inevitably be incomplete and will reflect the areas of particular interest to the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akoyunoglou G, Calvin M (1963) Mechanism of the carboxydismutase reaction. II. Carboxylation of the enzyme. Biochem Zeits 338:20–30

    CAS  Google Scholar 

  • Anderson LE, Price GB, Fuller RC (1968) Molecular diversity of the ribulose-1,5-diphosphate carboxylase from photosynthetic microorganisms. Science 161:482–484

    Article  CAS  Google Scholar 

  • Andersen WR, Wildner GF, Criddle RS (1970) Ribulose diphosphate carboxylase: III. Altered forms of ribulose diphosphate carboxylase from mutant tomato plants. Arch Biochem Biophys 137:84–90

    Article  PubMed  CAS  Google Scholar 

  • Andralojc PJ, Keys AJ, Martindale W, Dawson GW, Parry MAJ (1996) Conversion of d-hamamelose into 2-carboxy-d-arabinitol and 2-carboxy-d-arabinitol 1-phosphate in leaves of Phaseolus vulgaris L. J Biol Chem 271:26803–26809

    Article  PubMed  CAS  Google Scholar 

  • Andralojc PJ, Keys AJ, Kossman J, Parry MAJ (2002) Elucidating the biosynthesis of 2-carboxyarabinitol 1-phosphate through reduced expression of chloroplastic fructose 1,6-bisphosphate phosphatase and radio tracer studies using 14CO2. Proc Natl Acad Sci USA 99:4742–4747

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ, Kane HJ (1991) Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. J Biol Chem 266:9447–9452

    PubMed  CAS  Google Scholar 

  • Andrews TJ, Lorimer GH (1987) Rubisco: structure, mechanisms, and prospects for improvement. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol 10. Academic Press, New York, pp 131–218

    Google Scholar 

  • Andrews TJ, Lorimer GH, Tolbert NE (1973) Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction 1 protein of leaves. Biochemistry 12:1–18

    Article  Google Scholar 

  • Anwaruzzaman, Nakano Y, Yokota A (1996) Different location in dark-adapted leaves of Phaseolus vulgaris of ribulose-1,5-bisphosphate carboxylase/oxygenase and 2-carboxyarabinitol 1-phosphate. FEBS Lett 388:223–227

    Article  PubMed  CAS  Google Scholar 

  • Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:286–290

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Lorimer GH (1981) Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase. Biochemistry 20:2219–2225

    Article  PubMed  CAS  Google Scholar 

  • Bahr JT, Jensen RG (1974) Ribulose disphosphate carboxylase from freshly ruptured spinach chloroplasts having an in vivo Km[CO2]. Plant Physiol 53:39–44

    PubMed  CAS  Google Scholar 

  • Bainbridge G, Madgwick P, Parmar S, Mitchell R, Paul M, Pitts J, Keys AJ, Parry MAJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46:1269–1276

    CAS  Google Scholar 

  • Baker TS, Eisenberg D, Eiserling FA, Weissman L (1975) The structure of form I crystals of d-ribulose-1,5-diphosphate carboxylase. J Mol Biol 91:391–398

    Article  PubMed  CAS  Google Scholar 

  • Barraclough R, Ellis RJ (1980) Protein synthesis in chloroplasts. XI. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated pea chloroplasts. Biochim Biophys Acta 608:19–31

    PubMed  CAS  Google Scholar 

  • Bartholomew DM, Bartley GE, Scolnik P (1991) Abscisic acid control of rbcS and cab transcription in tomato leaves. Plant Physiol 96:291–296

    PubMed  CAS  Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76:35–52

    Article  PubMed  Google Scholar 

  • Bassham JA, Kirk M (1962) The effect of oxygen on the reduction of CO2 to glycolic acid and other products during photosynthesis by Chlorella. Biochem Biophys Res Commun 9:376–380

    Article  PubMed  CAS  Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M (1954) The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76:1760–1770

    Article  CAS  Google Scholar 

  • Bedbrook JR, Smith SM, Ellis RJ (1980) Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1,5-bisphosphate carboxylase. Nature 287:692–697

    Article  CAS  Google Scholar 

  • Bender MM (1968) Mass spectrophotometric studies of carbon-13 variation in corn and other grasses. Radiocarbon 10:468–472

    Google Scholar 

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  CAS  Google Scholar 

  • Benson AA (1951) Identification of ribulose in C14O2 photosynthesis products. J Am Chem Soc 73:2971–2972

    Article  CAS  Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73:29–49

    Article  PubMed  CAS  Google Scholar 

  • Benson AA, Calvin M (1950) The path of carbon in photosynthesis. VII. Respiration and photosynthesis. J Exp Bot 1:63–68

    Article  Google Scholar 

  • Benson AA, Bassham JA, Calvin M, Goodale TC, Hass VA, Stepka W (1950) The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J Am Chem Soc 72:1710–1718

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Berry JA, Lorimer GH, Pierce J, Seemann JR, Meek J, Freas S (1987) Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulose-bisphosphate carboxylase activity. Proc Natl Acad Sci USA 84:734–738

    Article  PubMed  CAS  Google Scholar 

  • Berry JO, Nikolau BJ, Carr JP, Klessig DF (1985) Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol 5:2238–2246

    PubMed  CAS  Google Scholar 

  • Berry JO, Breiding DE, Klessig DF (1990) Light-mediated control of translational initiation of Ribulose-1,5-bisphosphate carboxylase in Amaranth Cotyledons. Plant Cell 2:795–803

    Article  PubMed  CAS  Google Scholar 

  • Berry-Lowe SL, McKnight TD, Meagher RB (1982) The nucleotide sequence, expression and evolution of one member of a multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean. J Mol Appl Genet 1:483–498

    PubMed  CAS  Google Scholar 

  • Bhagwat AJ, Sane PV (1978) Evidence for the involvement of superoxide anions in the oxygenase reaction of ribulose-1,5-diphosphate carboxylase. Biochem Biophys Res Commun 84:865

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat AJ, Ramakrishna J, Sane PV (1978) Specific inhibition of oxygenase activity of ribulose-1,5-diphosphate carboxylase by hydroxylamine. Biochem Biophys Res Commun 83:954–962

    Article  PubMed  CAS  Google Scholar 

  • Björkman O (1968a) Carboxydismutase activity in shade-adapted and sun-adapted species of higher plants. Physiol Plant 21:1–10

    Article  Google Scholar 

  • Björkman O (1968b) Further studies of photosynthetic properties in sun and shade ecotypes of Solidago virgaurea. Physiol Plant 21:84–99

    Article  Google Scholar 

  • Blair GE , Ellis RJ (1973) Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of Fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319:223–224

    PubMed  CAS  Google Scholar 

  • Bogorad L (2003) Photosynthesis research: advances through molecular biology—the beginnings, 1975–1980s and on. Photosynth Res 76:13–33

    Article  PubMed  Google Scholar 

  • Bowes G (1991) Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant Cell Environ 14:795–806

    Article  CAS  Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose 1,5-diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolphanderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Brändén R (1978) Ribulose-1,5-bisphosphate carboxylase and oxygenase from green plants are two different enzymes. Biochem Biophys Res Commun 81:539–546

    Article  PubMed  Google Scholar 

  • Brändén R, Nilsson T, Styring S (1980a) The formation of l-3-phosphoglyceric acid by ribulose-1,5-bisphosphate carboxylase. Biochem Biophys Res Commun 92:1297–1305

    Article  PubMed  Google Scholar 

  • Brändén R, Nilsson T, Styring S, Ångström J (1980b) l-3-phosphoglyceric acid, formed by ribulose-1,5-bisphosphate carboxylase, is the primary substrate for photorespiration. Biochem Biophys Res Commun 92:1306–1312

    Article  PubMed  Google Scholar 

  • Broglie R, Coruzzi G, Fraley RT, Rogers SG, Horsch RB, Niedermeyer JG, Fink CL, Flick JS, Chua N-H (1984) Light-regulated expression of a pea ribulose-1,5-bisphosphate carboxylase small subunit gene in transformed plant cells. Science 224:838–843

    Article  PubMed  CAS  Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. Planta 165:397–406

    Article  CAS  Google Scholar 

  • Brooks A, Portis AR Jr (1988) Protein-bound ribulose bisphosphate correlates with deactivation of ribulose bisphosphate carboxylase in leaves. Plant Physiol 87:244–249

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (eds) (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Maryland

    Google Scholar 

  • Calvin M (1954) Chemical and photochemical reactions of thioctic acid and related disulfides. Fed Proc 13:697–711

    PubMed  CAS  Google Scholar 

  • Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 21:3–16

    Google Scholar 

  • Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480

    Article  CAS  PubMed  Google Scholar 

  • Calvin M, Benson AA (1949) The path of carbon in photosynthesis IV: the identity and sequence of the intermediates in sucrose synthesis. Science 109:140–142

    Article  CAS  PubMed  Google Scholar 

  • Carré-Mlouka A, Méjean A, Quillardet P, Ashida H, Saito Y, Yokota A, Callebaut I, Sekowska A, Dittmann E, Bouchier C, Tandeau de Marsac N (2006) A new Rubisco-like protein coexists with a photosynthetic Rubisco in the planktonic cyanobacteria Microcystis. J Biol Chem 281:24462–24471

    Article  PubMed  CAS  Google Scholar 

  • Chan P-K, Wildman SG (1972) Chloroplast DNA codes for the primary structure of the large subunit of Fraction I protein. Biochim Biophys Acta 277:677–680

    PubMed  CAS  Google Scholar 

  • Chapman M, Suh SW, Cascio D, Smith WW, Eisenberg D (1987) Sliding-layer conformational change limited by the quaternary structure of plant Rubisco. Nature 329:354–356

    Article  PubMed  CAS  Google Scholar 

  • Chapman MS, Shu SW, Curmi PMG, Cascio D, Smith WW, Eisenberg DS (1988) Tertiary structure of plant Rubisco—Domains and their contacts. Science 24:71–74

    Article  Google Scholar 

  • Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proc Natl Acad Sci USA 90:363–367

    Article  PubMed  CAS  Google Scholar 

  • Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (1998) Mechanism of Rubisco: the carbamate as general base. Chem Rev 98:549–561

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Filmer D Wishnick M, Lane MD (1969) The active species of “CO2” utilized by ribulose diphosphate carboxylase. J Biol Chem 244:1081–1083

    PubMed  CAS  Google Scholar 

  • Coruzzi G, Broglie R, Edwards C, Chua N-H (1984) Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J 3:1671–1679

    PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    Article  PubMed  CAS  Google Scholar 

  • Criddle RS, Dau B, Kleinhof GE, Huffaker RC (1970) Differential synthesis of ribulosediphosphate carboxylase subunits. Biochem Biophys Res Commun 41:621–627

    Article  PubMed  CAS  Google Scholar 

  • Dean C, van den Elzen P, Tamaki S, Dunsmuir P, Bedbrook J (1985) Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J 4:3055–3061

    PubMed  CAS  Google Scholar 

  • Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882

    PubMed  CAS  Google Scholar 

  • Desimone M, Henke A, Wagner E (1996) Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 111:789–796

    PubMed  CAS  Google Scholar 

  • Dobberstein B, Blobel G, Chua N-H (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74:1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Dorner RW, Kahn A, Wildman SG (1957) The proteins of green leaves. VII. Synthesis and decay of the cytoplasmic proteins during the life of the tobacco leaf. J Biol Chem 229:945–952

    PubMed  CAS  Google Scholar 

  • Duff AP, Andrews TJ, Curmi PMG (2000) The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J Mol Biol 298:903–916

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DL, Badger MR, Andrews TJ (1990a) A kinetic characterization of slow inactivation of ribulosebisphosphate carboxylase during catalysis. Plant Physiol 93:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DL, Badger MR, Andrews TJ (1990b) Slow inactivation ribulosebisphosphate carboxylase during catalysis is not due to decarbamylation of the catalytic site. Plant Physiol 93:1383–1389

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DL, Badger MR, Andrews TJ (1990c) Slow inactivation ribulosebisphosphate carboxylase during catalysis is caused by accumulation of a slow, tight-binding inhibitor at the catalytic site. Plant Physiol 93:1390–1397

    PubMed  CAS  Google Scholar 

  • Edmondson DL, Kane HJ, Andrews TJ (1990d) Substrate isomerization inhibits ribulosebisphosphate carboxylase during catalysis. FEBS Lett 260:62–66

    Article  CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  • Ellis RJ (2004) Chloroplasts to chaperones: how one thing led to another. Photosynth Res 80:333–343

    Article  CAS  Google Scholar 

  • Ellis RJ, Gray JC (eds) (1986) Ribulose bisphosphate carboxylase-oxygenase. The Royal Society, London

    Google Scholar 

  • Ezaki S, Maeda N, Kishimoto T, Atomi H, Imanaka T (1999) Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274:5078–5082

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546

    Article  PubMed  CAS  Google Scholar 

  • Fiedler F, Müllhofer G, Trebst A, Rose IA (1967) Mechanism of ribulose-diphosphate carboxydismutase reaction. Eur J Biochem 1:395–399

    Article  PubMed  CAS  Google Scholar 

  • Finn MW, Tabita FR (2004) Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea. J Bacteriol 186:6360–6366

    Article  PubMed  CAS  Google Scholar 

  • Fluhr R, Chua N-H (1986) Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: phytochrome response and blue-light induction. Proc Natl Acad Sci USA 83:2358–2362

    Article  PubMed  CAS  Google Scholar 

  • Fong FK, Butcher KA (1988) Non-cyclic photoreductive carbon fixation in photosynthesis. Light and dark transients of the glycerate-3-P special pair. Biochem Biophys Res Commun 150:399–404

    Article  PubMed  CAS  Google Scholar 

  • Forrester ML, Krotkov G, Nelson CD (1966) Effect of oxygen on photosynthesis, photorespiration, and respiration in detached leaves. I. Soybean Plant Physiol 41:422–427

    CAS  Google Scholar 

  • Friedberg D, Kaplan A, Ariel R, Kessel M, Seijffers J (1989) The 5’-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol 171:6069–6076

    PubMed  CAS  Google Scholar 

  • Friedrich JW, Huffaker RC (1980) Photosynthesis, leaf resistances, and ribulose-1,5-bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiol 65:1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT, Chitty JA, von Caemmerer S, Jenkins CLD (1996) Antisense RNA inhibition of rbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant Flaveria bidentis. Plant Physiol 111:725–734

    PubMed  CAS  Google Scholar 

  • Gaffron H (1960) Energy storage: photosynthesis. In: Steward FC (ed) Plant physiology. Academic Press, New York, pp 136–160

    Google Scholar 

  • Galmes J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and with persistent leaves. Plant Cell Environ 28:571–579

    Article  CAS  Google Scholar 

  • Garrett MK (1978) Different specificity/photorespiration in diploid vs. tetraploid wheat. Nature 274:913–915

    Article  CAS  Google Scholar 

  • Gatenby AA, van der Vies SM, Bradley D (1985) Assembly in E. coli of a functional multi-subunit ribulose bisphosphate carboxylase from a blue-green alga. Nature 314:617–620

    Article  CAS  Google Scholar 

  • Gest H, Blankenship RE (2005) Time line of discoveries: anoxygenic bacterial photosynthesis. In: Govindjee, Beatty JT, Gest H, Allen JF (eds) Discoveries in photosynthesis. Advances in photosynthesis and respiration, vol 20. Springer, Dordrecht, pp 51–62

    Chapter  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–889

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Krogmann D (2005) Discoveries in oxygenic photosynthesis (1727–2003): a perspective. In: Govindjee, Beatty JT, Gest H, Allen JF (eds) Discoveries in photosynthesis. Advances in photosynthesis and respiration, vol 20. Springer, Dordrecht, pp 63–105

  • Graham D, Grieve AM, Smillie RM (1968) Phytochrome as the primary photoregulator of the synthesis of Calvin Cycle enzymes in etiolated pea seedlings. Nature 218:89–90

    Article  CAS  Google Scholar 

  • Gutteridge S, Gatenby AA (1995) Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7:809–819

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge S, Julien B (1989) A phosphatase from chloroplast stroma of Nicotiana tabacum hydrolyses 2’-carboxyarabinitol 1-phosphate, the natural inhibitor of Rubisco to 2’-carboxyarabinitol. FEBS Lett 254:225–230

    Article  CAS  Google Scholar 

  • Gutteridge S, Parry MAJ, Schmidt CNG, Feeney J (1984a) An investigation of ribulosebisphosphate carboxylase activity by high-resolution H1-NMR. FEBS Lett 170:355–359

    Article  CAS  Google Scholar 

  • Gutteridge S, Sigal I, Thomas B, Arentzen R, Cordova A, Lorimer G (1984b) A site-specific mutation within the active site of ribulose-1,5-bisphosphate carboxylase of Rhodospirillum rubrum. EMBO J 3:2737–2743

    PubMed  CAS  Google Scholar 

  • Gutteridge S, Parry MAJ, Burton S, Keys AJ, Mudd A, Feeney J, Servaites JC, Pierce J (1986a) A nocturnal inhibitor of carboxylation in leaves. Nature 324:274–276

    Article  CAS  Google Scholar 

  • Gutteridge S, Phillips AL, Kettleborough CA, Parry MAJ, Keys AJ (1986b) Expression of bacterial Rubisco genes in Escherichia coli. Phil Trans R Soc Lond B 313:433–445

    Article  CAS  Google Scholar 

  • Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101:37–47

    PubMed  CAS  Google Scholar 

  • Hall NP, Keys AJ, Merrett MJ (1978) Ribulose-1,5-bisphosphate carboxylase protein during flag leaf senescence. J Exp Bot 29:31–37

    Article  CAS  Google Scholar 

  • Hammond ET, Andrews TJ, Mott KA, Woodrow IE (1998a) Regulation of Rubisco activation in antisense plants of tobacco containing reduced levels of Rubisco activase. Plant J 14:101–110

    Article  PubMed  CAS  Google Scholar 

  • Hammond ET, Andrews TJ, Woodrow IE (1998b) Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase by carbamylation and 2-carboxyarabinitol 1-phosphate in tobacco: insights from studies of antisense plants containing reduced amounts of Rubisco activase. Plant Physiol 118:1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)—like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Harpel MR, Serpersu EH, Lamerdin JA, Huang Z-H, Gage DA, Hartman FC (1995) Oxygenation mechanism of ribulose-bisphosphate carboxylase/oxygenase. Structure and origin of 2-carboxytetritol 1,4-bisphosphate, a novel O2-dependent side product generated by a site-directed mutant. Biochemistry 34:11296–11306

    Article  PubMed  CAS  Google Scholar 

  • Hartley MR, Wheeler A, Ellis RJ (1975) Protein synthesis in chloroplasts. V. Translation of messenger RNA for the large subunit of fraction I protein in a heterologous cell-free system. J Mol Biol 91:67–77

    Article  PubMed  CAS  Google Scholar 

  • Hartmen FC, Harpel MR (1993) Chemical and genetic probes of the active-site of d-ribulose-1,5-bisphosphate carboxylase oxygenase—a retrospective based on the 3-dimensional structure. Adv Enzymol 67:1–75

    Google Scholar 

  • Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of d-ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem 63:197–234

    Article  PubMed  CAS  Google Scholar 

  • Haselkorn RR, Fernández-Morán H, Kieras FJ, van Bruggen EFJ (1965) Electron microscopic and biochemical characterization of Fraction 1 protein. Science 150:1598–1601

    Article  PubMed  CAS  Google Scholar 

  • Hatch AL, Jensen RG (1980) Regulation of ribulose-1,5-bisphosphate carboxylase from tobacco: changes in pH response and affinity for CO2 and Mg2+ induced by chloroplast intermediates. Arch Biochem Biophys 205:587–594

    Article  PubMed  CAS  Google Scholar 

  • Heldt HW (2005) Plant biochemistry, 3rd edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  PubMed  CAS  Google Scholar 

  • Highfield PE, Ellis RJ (1978) Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase. Nature 271:420–424

    Article  CAS  Google Scholar 

  • Holiday AS, Martindale W, Alred R, Brooks AL, Leegood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    Google Scholar 

  • Holbrook GP, Bowes G, Salvucci ME (1989) Degradation of 2-carboxyarabinitol 1-phosphate by a specific chloroplast phosphatase. Plant Physiol 90:673–678

    PubMed  CAS  Google Scholar 

  • Holdsworth RH (1971) The isolation and the partial characterization of the pyrenoid protein from Eremosphaera viridis. J Cell Biol 15:499–513

    Article  Google Scholar 

  • Horecker BL (2002) The pentose phosphate pathway. J Biol Chem 277:47965–47971

    Article  PubMed  CAS  Google Scholar 

  • Horecker BL, Hurwitz J, Weissbach A (1956) The enzymatic synthesis and properties of ribulose 1,5-diphosphate. J Biol Chem 218:785–794

    PubMed  CAS  Google Scholar 

  • Houtz RL, Portis AR Jr (2003) The life of ribulose 1,5-bisphosphate carboxylase/oxygenase—posttranslational facts and mysteries. Arch Biochem Biophys 414:150–158

    PubMed  CAS  Google Scholar 

  • Houtz RL, Stults JT, Mulligan RM, Tolbert NE (1989) Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 86:1855–1859

    Article  PubMed  CAS  Google Scholar 

  • Huber SC, Hall TC, Edwards GE (1976) Differential localization of Fraction I protein between chloroplast types. Plant Physiol 57:730–733

    PubMed  CAS  Google Scholar 

  • Huffaker RC, Radin T, Kleinkop GE, Cox EL (1970) Effects of mild water stress on enzymes of nitrate assimilation of carboxylative phase of photosynthesis in barley. Crop Sci 10:471–474

    Article  CAS  Google Scholar 

  • Hurwitz J, Weissbach A, Horecker BL, Symrniotis PZ (1956) Spinach phosphoribulokinase. J Biol Chem 218:769–783

    PubMed  CAS  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T (1997) The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38:471–479

    PubMed  CAS  Google Scholar 

  • Jakoby WB, Drummond DO, Ochoa S (1956) Formation of 3-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J Biol Chem 218:811–822

    PubMed  CAS  Google Scholar 

  • Jensen RG (2004) Activation of Rubisco controls CO2 assimilation in light. Photosynth Res 82:187–193

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, Bahr JT (1977) Ribulose 1,5-bisphosphate carboxylase-oxygenase. Annu Rev Plant Physiol 28:379–400

    Article  CAS  Google Scholar 

  • Jensen RG, Bassham JA (1968) Photosynthesis by isolated chloroplasts. III. Light activation of the carboxylation reaction. Biochim Biophys Acta 153:227–234

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB, Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem 258:13752–13758

    PubMed  CAS  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulosebisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  CAS  Google Scholar 

  • Jordan DB, Chollet R, Ogren WL (1983) Binding of phosphorylated effectors by active and inactive forms of ribulose-1,5-bisphosphate carboxylase. Biochemistry 22:3410–3418

    Article  CAS  Google Scholar 

  • Kane HJ, Wilkin JM, Portis AR Jr, Andrews TJ (1998) Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in ribulose-1,5-bisphosphate Plant Physiol 117:1059–1069

    CAS  Google Scholar 

  • Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Nat Acad Sci USA 91:1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119:133–141

    Article  PubMed  CAS  Google Scholar 

  • Kaul R, Saluja D, Sachar RC (1986) Phosphorylation of small subunit plays a critical role in the regulation of RuBPCase in moss and spinach. FEBS Lett 209:63–70

    Article  CAS  Google Scholar 

  • Kawashima N, Wildman SG (1972) Studies on Fraction I protein. IV. Mode of inheritance of the primary structure in relation to whether chloroplast or nuclear DNA contains the code for a chloroplast protein. Biochim Biophys Acta 262:42–49

    PubMed  CAS  Google Scholar 

  • Keys AJ, Major I, Parry MAJ (1995) Is there another player in the game of Rubisco regulation? J Exp Bot 46:1245–1251

    CAS  Google Scholar 

  • Khan S, Andraloj PJ, Lea PJ, Parry MAJ (1999) 2’-carboxy-d-arabinitol 1-phosphate (CA1P) protects ribulose-1,5-bisphosphate carboxylase/oxygenase against proteolytic breakdown. Eur J Biochem 266:840–847

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis AR Jr (2004) Oxygen-dependent H2O2 production by Rubisco, FEBS Lett 571:124–128

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis AR Jr (2006) Kinetic analysis of the slow inactivation of Rubisco during catalysis: effects of temperature, O2 and Mg++. Photosynth Res 87:195–204

    Article  PubMed  CAS  Google Scholar 

  • Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T, Miki K (2001) Crystal structure of a novel-type archaeal Rubisco with pentagonal symmetry. Structure 9:473–481

    Article  PubMed  CAS  Google Scholar 

  • Kobza J, Seemann JR (1988) Mechanisms for light-dependent regulation of ribulose-1,5-bisphosphate carboxylase activity and photosynthesis in intact leaves. Proc Natl Acad Sci USA 85:3815–3819

    Article  PubMed  CAS  Google Scholar 

  • Knight S, Andersson I, Brändén C-I (1989) Re-examination of the three-dimensional structure of the small subunit of RuBisCo from higher-plants. Science 244:702–705

    Article  CAS  PubMed  Google Scholar 

  • Knight S, Andersson I, Brändén C-I (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution: subunit interactions and active site. J Mol Biol 215:113–160

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Hofmann B, Schäfer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’ of photosynthesis? Plant J 3:817–828

    Article  CAS  Google Scholar 

  • Ku MSB, Schmitt MR, Edwards GE (1979) Quantitative determination of RuBP carboxylase–oxygenase protein in leaves of several C3 and C4 plants. J Exp Bot 30:89–98

    Article  CAS  Google Scholar 

  • Kung S (1976) Tobacco fraction 1 protein: a unique genetic marker. Science 191:429–434

    Article  PubMed  CAS  Google Scholar 

  • Kung SD, Marsho TV (1976) Regulation of RuBP carboxylase/oxygenase activity and its relationship to plant photorespiration. Nature 259:352–356

    Article  Google Scholar 

  • Kung SD, Sakano K, Wildman SG (1974) Multiple peptide composition of the large and small subunits of Nicotiana tabacum fraction I protein ascertained by fingerprinting and electrofocusing. Biochim Biophys Acta 365:138–147

    PubMed  CAS  Google Scholar 

  • Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54:678–685

    Article  PubMed  CAS  Google Scholar 

  • Larson EM, O’Brien CM, Zhu G, Spreitzer RJ, Portis AR Jr (1997) Specificity for activase is changed by a pro-89 to arg substitution in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 272:17033–17037

    Article  PubMed  CAS  Google Scholar 

  • Levine RP, Togasaki RK (1965) A mutant strain of Chlamydomonas reinhardi lacking ribulose diphosphate carboxylase activity. Proc Natl Acad Sci USA 53:987–990

    Article  PubMed  CAS  Google Scholar 

  • Li C, Salvucci ME, Portis AR Jr (2005) Two residues of Rubisco activase involved in recognition of the Rubisco substrate. J Biol Chem 280:24864–24869

    Article  PubMed  CAS  Google Scholar 

  • Lilley RM, Wlaker DA (1975) Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphosphate carboxylase from spinach. Plant Physiol 55:1087–1092

    PubMed  CAS  Google Scholar 

  • Lodish H, Berk A, Zipursky LS, Matsudaria P, Baltimore D, Darnell J (eds) (2000) Molecular cell biology. WH Freeman & Co, New York

    Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH (1981) The carboxylation and oxygenation of ribulose 1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu Rev Plant Physiol Plant Mol Biol 32:349–383

    CAS  Google Scholar 

  • Lorimer GH, Miziorko H (1980) Carbamate formation of the epsilon-amino group of a lysl residue as the basis for the activation of ribulose bisphosphate carboxylase by CO2 and Mg2+. Biochemistry 19:5321–5328

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH, Andrews TJ, Tolbert NE (1973) Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12:18–23

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15:529–536

    Article  PubMed  CAS  Google Scholar 

  • Mächler F, Nösberger J (1980) Regulation of ribulose bisphosphate carboxylase activity in intact wheat leaves by light, CO2, and temperature. J Expt Bot 31:1485–1491

    Article  Google Scholar 

  • Mate CJ, Hudson GS, von Caemmerer S, Evans JR, Andrews TJ (1993) Reduction of ribulose-bisphosphate carboxylase activase levels in tobacco (Nicotiana tabacum) by antisense RNA reduces ribulose bisphosphate carboxylase carbamylation and impairs photosynthesis. Plant Physiol 102:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Mayaudon J (1957) Study of association between the main nucleoprotein of green leaves and carboxydismutase. Enzymologia 18:345–354

    Google Scholar 

  • Mayaudon J, Benson AA, Calvin M (1957) Ribulose-1,5-diphosphate from and CO2 fixation by Tetragonia expansa leaves extract. Biochim Biophys Acta 23:342–351

    Article  PubMed  CAS  Google Scholar 

  • McCurry SD, Pierce J, Tolbert NE, Orme-Johnson WH (1981) On the mechanism of effector-mediated activation of ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 256:6623–6628

    PubMed  CAS  Google Scholar 

  • McDermitt DK, Zeiher CA, Porter CA (1983) Physiological activity of RuBP carboxylase in soybeans. In: Randall DD, Blevins DG, Larson R (eds) Current topics in plant biochemistry and physiology, vol 1. University of Missouri Press, Columbia, p 230

    Google Scholar 

  • McIntosh L, Poulsen C, Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphatecarboxylase of maize. Nature 288:556–560

    Article  CAS  Google Scholar 

  • Martin PG (1979) Amino-acid sequence of the small subunit of ribulose-1,5-bisphosphate carboxylase from spinach. Aust J Plant Physiol 6:401–408

    CAS  Google Scholar 

  • Miziorko HM, Lorimer GH (1983) Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem 52:507–535

    Article  PubMed  CAS  Google Scholar 

  • Moore BD, Isidoro E, Seemann JR (1993) Distribution of 2-carboxyarabinitol among plants. Phytochem 34:703–707

    Article  CAS  Google Scholar 

  • Morell MK, Paul K, Kane HJ, Andrews TJ (1992) Rubisco: maladapted or misunderstood. Aust J Bot 40:431–441

    Article  CAS  Google Scholar 

  • Moses V, Calvin M (1958) The path of carbon in photosynthesis. XXII. The identification of carboxy-ketopentitol diphosphates as product of photosynthesis. Proc Natl Acad Sci USA 44:260–277

    Article  PubMed  CAS  Google Scholar 

  • Mott KA, Snyder GW, Woodrow IE (1997) Kinetics of Rubisco activation as determined from gas-exchange measurements in antisense plants of Arabidopsis thaliana containing reduced levels of Rubisco activase. Aust J Plant Physiol 24:811–818

    CAS  Google Scholar 

  • Müllhofer G, Rose IA (1964) The position of carbon-carbon bond cleavage in the ribulose diphosphate carboxydismutase reaction. J Biol Chem 240:1341–1346

    Google Scholar 

  • Nakamura H, Saka H (1978) Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants. Jpn J Crop Sci 47:704–714

    Google Scholar 

  • Nargang R, McIntosh L, Somerville CR (1984) Nucleotide sequence of the ribulosebisphosphate carboxylase gene from Rhodospirillum rubrum. Mol Gen Genet 193:220–224

    Article  CAS  Google Scholar 

  • Neales TF, Incoll LD (1968) Control of leaf photosynthesis rate by level of assimilate concentration in leaf—a review of the hypothesis. Bot Rev 34:107–125

    Article  Google Scholar 

  • Nelson PE, Surzycki SJ (1976) A mutant strain of Chlamydomonas reinhardi exhibiting altered ribulosebisphosphate carboxylase. Eur J Biochem 61:465–474

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL (2003) Affixing the O to rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76:53–63

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL, Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature 230:159–160

    CAS  Google Scholar 

  • Okabe KI, Codd GA, Stewart WDP (1979) Hydroxylamine stimulates carboxylase activity and inhibits oxygenase activity of cyanobacterial RuBP carboxylase/oxygenase. Nature 279:525–527

    Article  CAS  Google Scholar 

  • Onizuka T, Endo S, Akiyama H, Kanai S, Hirano M, Yokota A, Tanaka S, Miyasaka H (2004) The rbcX gene product promotes the production and assembly of ribulose-1,5-bisphosphate carboxylase/oxygenase of Synechococcus sp. PCC7002 in Escherichia coli. Plant Cell Physiol 45:1390–1395

    Article  PubMed  CAS  Google Scholar 

  • Osmond B, Yakir D, Giles L, Morrison J (1994) From corn shucks to global greenhouse: stable isotopes as integrators of photosynthetic metabolism from tissue to planetary scale. In: Tolbert NE, Preiss J (eds) Regulation of atmospheric CO2 and O2 by photosynthetic carbon metabolism. Oxford University Press, NY, pp 249–265

    Google Scholar 

  • O’Toole JC,Crookson RK, Treharne KJ, Ozbun JL (1976) Mesophyll resistance and carboxylase activity—comparison under water stress conditions. Plant Physiol 57:465–468

    PubMed  CAS  Google Scholar 

  • Ott CM, Smith BD, Portis AR Jr, Spreitzer RJ (2000) Activase region on chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Nonconservative substitution in the large subunit alters species specificity of protein interaction. J Biol Chem 275:26241–26244

    Article  PubMed  CAS  Google Scholar 

  • Parikh MR, Greene DN, Woods KK, Matsumura I (2006) Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli . Protein Engineering Design and Selection 19:113–119

    Article  CAS  Google Scholar 

  • Park R, Epstein S (1961) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–126

    Google Scholar 

  • Park RB, Pon NG (1961) Correlation of structure with function in Spinacea oleracea chloroplasts. J Mol Biol 3:1–10

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Gutteridge S (1984) The effect of SO 2− 3 and SO 2− 4 ions on the reactions of ribulosebisphosphate carboxylase. J Exp Bot 35:157–168

    Article  CAS  Google Scholar 

  • Parry MAJ, Delgado E, Vadell J, Keys AJ, Lawlor DW, Medrano H (1993) Water-stress and the diurnal activity of ribulose-1,5-bisphosphate carboxylase in field-grown Nicotiana-tabacum genotypes selected for survival at low CO2 concentrations. Plant Physiol Biochem 31:113–120

    CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Parmar S, Keys AJ, Habash D, Paul MJ, Alred R, Quick WP, Servaites JC (1997) Regulation of Rubisco by inhibitors in the light. Plant Cell Environ 20:528–534

    Article  CAS  Google Scholar 

  • Parry MAJ, Loveland JE, Andralojc PJ (1999) Regulation of Rubisco. In: Bryant JE, Burrell MM, Kruger NJ (eds) Plant carbohydrate biochemistry. Bios, Oxford, UK, pp 127–145

    Google Scholar 

  • Parry MAJ, Madgwick PJ Carvahlo JFC, Andralojc PJ (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agric Sci 145:31–43

    Article  CAS  Google Scholar 

  • Paulsen JM, Lane MD (1966) Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemisty 5:2350–2357

    Article  CAS  Google Scholar 

  • Paech C, Pierce J, McCurry SD, Tolbert NE (1978) Inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase by ribulose-1,5-bisphosphate epimerization and degradation products. Biochem Biophys Res Commun 83:1084–1092

    Article  PubMed  CAS  Google Scholar 

  • Pell EJ (1979) How air pollutants induce disease. In: Horsafll J, Cowling E (eds) Plant disease, vol 4. Academic Press, New York, pp 179–194

    Google Scholar 

  • Pell EJ, Pearson NS (1983) Ozone-induced reduction in quantity of ribulose-1,5-bisphosphate carboxylase in alfalfa foliage. Plant Physiol 73:185–187

    PubMed  CAS  Google Scholar 

  • Peoples MB, Beilharz VC, Waters SP, Simpson RJ, Dalling MJ (1980) Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). II. Chloroplast senescence and the degradation of ribulose-1,5-bisphosphate carboxylase. Planta 149:241–251

    Article  CAS  Google Scholar 

  • Perchorowicz JT, Raynes DA, Jensen RG (1981) Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc Natl Acad Sci USA 78:2985–2989

    Article  PubMed  CAS  Google Scholar 

  • Peterson LW, Huffaker RC (1975) Loss of ribulose 1,5-diphosphate carboxylase and increase in proteolytic activity during senescence of detached primary barley leaves. Plant Physiol 55:1009–1015

    PubMed  CAS  Google Scholar 

  • Pierce J, Tolbert NE, Barker R (1980) Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogs. Biochemistry 19:934–942

    Article  PubMed  CAS  Google Scholar 

  • Pierce J, Carlson TJ, Williams GK (1989) A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci USA 86:5753–5757

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim ML, McClung CR (1993) Differential involvement of the circadian clock in the expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis, assembly, and activation in Arabidopsis thaliana. Plant Physiol 103:553–564

    PubMed  CAS  Google Scholar 

  • Pon NG, Rabin BR, Calvin M (1963) Mechanism of the carboxydismutase reaction. I. The effect of preliminary incubation of substrates, metal ion, and enzyme on activity. Biochem Zeits 338:7–19

    CAS  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Phys Plant Mol Biol 43:415–437

    Article  CAS  Google Scholar 

  • Portis AR Jr (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    Article  PubMed  CAS  Google Scholar 

  • Portis AR Jr, Salvucci ME (2002) The discovery of Rubisco activase—yet another story of serendipity. Photosynth Res 73:257–264

    Article  CAS  Google Scholar 

  • Portis AR Jr, Salvucci ME, Ogren WL (1986) Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol 82:967–971

    PubMed  CAS  Google Scholar 

  • Price GD, Badger MR (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    PubMed  CAS  Google Scholar 

  • Quayle JR, Fuller RC, Benson AA, Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate. J Am Chem Soc 76:3610–3611

    Article  CAS  Google Scholar 

  • Rabin BR, Trown PW (1964) Mechanism of action of carboxydismutase. Nature 202:1290–1291

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch EI (1956) Photosynthesis and related processes vol II, Part 2. Interscience Publishers, New York, pp 1630–1713

    Google Scholar 

  • Racker E (1955) Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature 175:249–251

    Article  PubMed  CAS  Google Scholar 

  • Raines CA (2006) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ 29:331–339

    Article  PubMed  CAS  Google Scholar 

  • Read BA, Tabita FR (1992) A hybrid ribulosebisphosphate carboxylase oxygenase enzyme exhibiting a substantial increase in substrate-specificity factor. Biochemistry 31:5553–5560

    Article  PubMed  CAS  Google Scholar 

  • Reddy G, Arteca RN, Dai Y-R, Flores HE, Negm FB, Pell EJ (1993) Changes in ethylene and polyamines in relation to mRNA levels of the large and small subunits of ribulose bisphosphate carboxylase/oxygenase in ozone-stressed potato foliage. Plant Cell Environ 16:819–826

    Article  CAS  Google Scholar 

  • Reinhold L, Zviman M, Kaplan A (1987) Inorganic carbon fluxes and photosynthesis in cyanobacteria—a quantitative model. In: Biggins J (eds) Progress in photosynthesis, vol IV. Martinus, Nijhoff, Dordrecht, The Netherlands, pp 6.289–6.296

    Google Scholar 

  • Ritland K, Clegg MT (1987) Evolutionary analysis of plant DNA sequences. Am Nat 130:S74–S100

    Article  CAS  Google Scholar 

  • Robinson SP, Portis AR Jr (1988) Release of the nocturnal inhibitor, carboxyarabinitol-1-phosphate, from ribulose bisphoshate carboxylase/oxygenase by Rubisco activase. FEBS Lett 233:413–416

    Article  CAS  Google Scholar 

  • Robinson SP, Portis AR Jr (1989a) Adenosine triphosphate hydrolysis by purified Rubisco activase. Arch Biochem Biophys 268:93–99

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Portis AR Jr (1989b) Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 88:1008–1014

    Google Scholar 

  • Rodermel SR, Abbott MS, Bogorad L (1988) Nuclear-organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 55:673–681

    Article  PubMed  CAS  Google Scholar 

  • Rodermel SR, Haley J, Jiang CZ, Tsai CH, Bogorad L (1996) A mechanism for intergenomic integration—abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA. Proc Natl Acad Sci USA 93:3881–3885

    Article  PubMed  CAS  Google Scholar 

  • Rutner AC, Lane MD (1967) Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Biophys Res Commun 28:531–537

    Article  PubMed  CAS  Google Scholar 

  • Sage RF (2002) Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Expt Bot 53:609–620

    Article  CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1988) The in-vivo response of the ribulose-1,5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174:407–416

    Article  CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol 89:590–596

    PubMed  CAS  Google Scholar 

  • Salvucci ME, Holbrook GP (1989) Purification and properties of 2-carboxy-d-arabinitol 1-phosphatase. Plant Physiol 90:679–685

    PubMed  CAS  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  Google Scholar 

  • Salvucci ME, Portis AR Jr, Ogren WL (1985) A soluble chloroplast protein catalyzes ribulosebisphosphate carboxylase/oxygenase activation in vivo. Photosynth Res 7:193–201

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Mechanism for deactivation of Rubisco under moderate heat stress. Physiol Plant 122:513–519

    Article  CAS  Google Scholar 

  • Sasaki Y Ishiye M, Sakihama T, Kamikubo T (1981) Light-induced increase of mRNA activity coding for the small subunit of ribulose-1,5-bisphosphate carboxylase. J Biol Chem 256:2315–2320

    Google Scholar 

  • Sasaki Y, Sakihama T, Kamikubo T, Shinozaki K (1983) Phytochrome-mediated regulation of two mRNAs, encoded by nuclei and chloroplasts of ribulose-1,5-bisphosphate carboxylase/oxgenase. Eur J Biochem 133:617–620

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Atomi H, Imanaka T (2007) Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Saver B, Knowles JR (1982) Ribulose-1,5-bisphosphate carboxylase: enzyme-catalysed appearance of solvent tritium at carbon 2 of ribulose 1,5-bisphosphate reisolated after partial reaction. Biochemistry 21:5398–5403

    Article  PubMed  CAS  Google Scholar 

  • Schloss JV, Lorimer GH (1982) The stereochemical course of ribulosebisphosphate carboxylase. Reductive trapping of the 6-carbon reaction-intermediate. J Biol Chem 257:4691–4694

    PubMed  CAS  Google Scholar 

  • Schmidt GW, Mishkind ML (1983) Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci USA 80:2632–2636

    Article  PubMed  CAS  Google Scholar 

  • Schmid GH, Bader KP, Radunz A, van Assche CJ, Reinier N, Courtiade B (1987) Effect of hydroxylamine derivatives on photorespiration in the tobacco aurea mutant Nicotiana tabacum Su/su. Z Naturforsch 42c:965–969

    Google Scholar 

  • Schneider G, Lindqvist Y, Brändén C-I, Lorimer GH (1986) Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9 Å resolution. EMBO J 5:3409–3415

    PubMed  CAS  Google Scholar 

  • Schrader SM, Kane HJ, Sharkey TD, von Caemmerer S (2006) High temperature enhances inhibitor production but reduces fallover in tobacco Rubisco. Funct Plant Biol 33:921–929

    Article  CAS  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  PubMed  CAS  Google Scholar 

  • Seemann JR, Badger MR, Berry JA (1984) Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiol 74:791–794

    PubMed  CAS  Google Scholar 

  • Seemann JR, Berry JA, Freas SM, Krump MA (1985) Regulation of ribulose bisphosphate carboxylase activity in vivo by a light-modulated inhibitor of catalysis. Proc Natl Acad Sci USA 82:8024–8028

    Article  PubMed  CAS  Google Scholar 

  • Servaites JC (1985) Binding of a phosphorylated inhibitor to ribulose bisphosphate carboxylase/oxygenase at night. Plant Physiol 78:839–843

    PubMed  CAS  Google Scholar 

  • Servaites JC, Parry MAJ, Gutteridge S, Keys AJ (1986) Species variation in the predawn inhibition of ribulose-1,5-bisphosphate carboxylase oxygenase. Plant Physiol 82:1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida H, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwya F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Shively JM, Ball F, Brown RE, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586

    Article  PubMed  CAS  Google Scholar 

  • Siegel MI, Lane MD (1973) Chemical and enzymatic evidence for the participation of a 2-carboxy-3-ketoribitiol-1,5-diphosphate intermediate in the carboxylation of ribulose 1,5-diphosphate. J Biol Chem 248:5486–5498

    PubMed  CAS  Google Scholar 

  • Siegelman HW, Hind G (1978) Photosynthetic carbon assimilation. Plenum Press, New York

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  CAS  Google Scholar 

  • Simpson E, Cooke RJ, Davies DD (1981) Measurement of protein degradation in leaves of Zea mays using [3H]acetic anhydride and tritiated water. Plant Physiol 67:1214–1219

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Ellis RJ (1981) Light stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulosebisphosphate carboxylase. J Mol Appl Genet 1:127–137

    PubMed  CAS  Google Scholar 

  • Somerville CR, Portis AR Jr, Ogren WL (1982) A mutant of Arabidopsis-thaliana which lacks activation of RuBP carboxylase in vivo. Plant Physiol 70:381–387

    PubMed  CAS  Google Scholar 

  • Somerville CR, Somerville SC (1984) Cloning and expression of the Rhodospirillum rubrum ribulosebisphosphate carboxylase gene in E. coli. Mol Gen Genet 193:214–219

    Article  CAS  Google Scholar 

  • Spreitzer RJ (1993) Genetic dissection of Rubisco structure and function. Annu Rev Plant Physiol Plant Mol Biol 44:411–434

    Article  CAS  Google Scholar 

  • Spreitzer RJ (1999) Questions about the complexity of chloroplast ribulose bisphosphate carboxylase/oxygenase. Photosynth Res 60:29–42

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Mets LJ (1980) Non-mendelian mutation affecting ribulose-1,5-bisphosphate carboxylase structure and activity. Nature 285:114–115

    Article  CAS  Google Scholar 

  • Spreizter RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Peddi SR, Satagopan S (2005) Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA 102:17225–17230

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Quick WP, Schurr U, Schulze E-D, Rodermel SR, Bogorad L (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. II. Flux-control coefficients for photosynthesis in varying light, CO2, and air humidity. Planta 183:555–566

    CAS  Google Scholar 

  • Sugiyama T, Akazawa T (1967) Structure of chloroplast proteins I. Subunit structure of wheat Fraction-1 protein. J Biochem 62:474–482

    PubMed  CAS  Google Scholar 

  • Sugiyama T, Akazawa T (1970) Subunit structure of spinach leaf ribulose 1,5-diphosphate carboxylase. Biochemistry 9:4499–4504

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids of higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28

    Article  CAS  Google Scholar 

  • Tabita FR (2004) Research on carbon dioxide fixation in photosynthetic microorganisms (1971–present). Photosyn Res 80:315–332

    Article  CAS  Google Scholar 

  • Tabita FR, McFadden BA (1974a) d-Ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum I. Levels, purification, and effects of metallic ions. J Biol Chem 249:3453–3458

    PubMed  CAS  Google Scholar 

  • Tabita FR, McFadden BA (1974b) d-Ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. II. Quarternary structure, composition, catalytic, and immunological properties. J Biol Chem 249:3459–3464

    PubMed  CAS  Google Scholar 

  • Tabita FR, Small CL (1985) Expression and assembly of active cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase in Escherichia coli containing stoichiometric amounts of large and small subunits. Proc Natl Acad Sci USA 82:6100–6103

    Article  PubMed  CAS  Google Scholar 

  • Tamiya H, Huzisige H (1949) Effect of oxygen on the dark reaction of photosynthesis. Acta Phytochim 15:83–104

    CAS  Google Scholar 

  • Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    Article  PubMed  CAS  Google Scholar 

  • Thornber JP, Ridley SM, Bailey JL (1965) Isolation and partial characterization of Fraction I protein from spinach-beet chloroplasts. Biochem J 96:29–31

    Google Scholar 

  • Tobin EM (1978) Light regulation of specific mRNA species in Lemna gibba L. G-3. Proc Natl Acad Sci USA 75:4749–4753

    Article  PubMed  CAS  Google Scholar 

  • Tobin EM (1981) Phytochrome-mediated regulation of messenger RNAs for the small subunit of ribulose 1,5-bisphosphate carboxylase and the light-harvesting chlorophyll a/b-protein in Lemna gibba. Plant Mol Biol 1:35–51

    Article  CAS  Google Scholar 

  • Trown PW (1965) An improved method for the isolation of carboxydismutase. Probable identity with Fraction 1 protein and the protein moiety of protochlorophyll holochrome. Biochemistry 4:908–918

    Article  PubMed  CAS  Google Scholar 

  • Van Assche CJ, Reinier N, Courtiade B, Chancel A, Huber S (1987) Chemical control of photorespiration: steady-state kinetic and conformational changes of ribulose-1,5-bisphosphate carboxylase/oygenase obtained with O-p-nitrophenylhydroxylamine. Z Naturforsch 42c:837–844

    Google Scholar 

  • Van den Broeck G, Timko MP, Kausch AP, Cashmore AR, Montau MV, Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplast by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature 313:358–363

    Article  PubMed  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  Google Scholar 

  • Vu CV, Allen LH Jr, Bowes G (1983) Effects of light and elevated atmospheric CO2 on the ribulose bisphosphate carboxylase activity and ribulose bisphosphate level of soybean leaves. Plant Physiol 73:729–734

    PubMed  CAS  Google Scholar 

  • Wanner LA, Gruissem W (1991) Expression dynamics of the tomato rbcS gene family during development. Plant Cell 3:1289–1303

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1920) Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. II. Biochem Z 103:188–217

    CAS  Google Scholar 

  • Waring PF, Khalifa MM, Treharne KJ (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature 220:453–457

    Article  Google Scholar 

  • Watson GFM, Yu J-P, Tabita FR (1999) Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea. J Bacteriol 181:1569–1575

    PubMed  CAS  Google Scholar 

  • Weis E (1981a) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39

    Article  CAS  Google Scholar 

  • Weis E (1981b) The temperature sensitivity of dark-inactivation and light-activation of the ribulose-1,5-bisphosphate carboxylase in spinach chloroplasts. FEBS Lett 129:197–200

    Article  CAS  Google Scholar 

  • Weissbach A, Smyrniotis PZ, Horecker BL (1954) Pentose phosphate and CO2 fixation with spinach extracts. J Am Chem Soc 76:3611–3612

    Article  CAS  Google Scholar 

  • Weissbach A, Horecker BL, Hurwitz J (1956) The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem 218:795–810

    PubMed  CAS  Google Scholar 

  • Werneke JM, Zielinski RE, Ogren WL (1988) Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci USA 85:787–791

    Article  PubMed  CAS  Google Scholar 

  • Werneke JM, Chatfield JM, Ogren WL (1989) Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1:815–825

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (2001a) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc Natl Acad Sci USA 98:14738–14743

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (2001b) The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13:193–205

    Article  PubMed  CAS  Google Scholar 

  • Wildman SG (2002) Along the trail from Faction I protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth Res 73:243–250

    Article  PubMed  CAS  Google Scholar 

  • Wildman SG, Bonner J (1947) The proteins of green leaves. I. Isolation, enzymatic properties, and auxin content of spinach cytoplasmic proteins. Arch Biochem Biophys 14:381–413

    CAS  Google Scholar 

  • Wildman SG, Kwanyuen P (1978) Fraction I protein and other products from tobacco for food. In: Siegelman HW, Hind G (eds) Photosynthetic carbon assimilation. Plenum Press, New York, pp 1–17

    Google Scholar 

  • Wildner GF, Criddle RS (1969) Ribulose disphosphate carboxylase I. A factor involved in light activation of the enzyme. Biochem Biophys Res Commun 37:952–960

    Article  PubMed  CAS  Google Scholar 

  • Wildner GF, Henkel J (1976) Specific inhibition of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase. Biochem Biophys Res Commun 69:268–275

    Article  PubMed  CAS  Google Scholar 

  • Wildner GF, Henkel J (1980) Preservation of RuBP carboxylase without oxygenase activity during anaerobiosis. FEBS Lett 113:81–84

    Article  CAS  Google Scholar 

  • Wilson AT, Calvin M (1955) The photosynthetic cycle. CO2 depedent transients. J Am Chem Soc 77:5948–5957

    Article  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Foster JG, Schmitt MR, Edwards GE (1982) Activity and quantity of ribulose bisphosphate carboxylase- and phosphoenolpyruvate carboxylase-protein in two Crassulacean acid metabolism plants in relation to leaf age, nitrogen nutrition, and point in time during a day/night cycle. Planta 154:309–317

    Article  CAS  Google Scholar 

  • Wishnick M, Lane MD, Scrutton MC (1970) The interaction of metal ions with ribulose 1,5-diphosphate carboxylase from spinach. J Biol Chem 245:4939–4947

    PubMed  CAS  Google Scholar 

  • Wittenbach VA (1979) Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence. Plant Physiol 64:884–887

    PubMed  CAS  Google Scholar 

  • Wittenbach VA, Ackerson RC, Giaquinta RT, Hebert RR (1980) Changes in photosynthesis, ribulose bisphosphate carboxylase, proteolytic activity, and ultrastructure of soybean leaves during senescence. Crop Sci 20:225–231

    Article  CAS  Google Scholar 

  • Wong SC (1979) Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44:68–74

    Article  Google Scholar 

  • Woodrow IE, Mott KA (1989) Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. Aust J Plant Physiol 16:487–500

    Article  CAS  Google Scholar 

  • Yeoh HH, Badger MR, Watson L (1981) Variations in the kinetic properties of ribulose-1,5-bisphosphate carboxylases among plants. Plant Physiol 67:1151–1155

    PubMed  CAS  Google Scholar 

  • Zhang N, Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96:9438–9443

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, Portis AR Jr (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99:3330–3334

    Article  PubMed  CAS  Google Scholar 

  • Zhu X-G, Portis AR Jr, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165

    Article  CAS  Google Scholar 

  • Zeigler I (1972) The effect of SO 3 on the activity of ribulose-1,5-diphosphate carboxylase in isolated spinach chloroplasts. Planta 103:155–163

    Article  Google Scholar 

  • Zhu G, Jensen RG (1991a) Xylulose 1,5-bisphosphate synthesized by ribulose 1,5-bisphosphate carboxylase/oxygenase during catalysis binds to decarbamylated enzyme. Plant Physiol 97:1348–1353

    PubMed  CAS  Google Scholar 

  • Zhu G, Jensen RG (1991b) Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Decarbamylation of catalytic sites depends on pH. Plant Physiol 97:1354–1358

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Govindjee for editing and inviting us to write this historical minireview. We thank Alf Keys, Mike Salvucci and our reviewers for suggestions that led to the improvement of the timeline presented here. Archie Portis thanks the Agricultural Research Service, United States Department of Agriculture and the Office of Basic Energy Sciences, United States Department of Energy for their long-term support. Martin Parry thanks the Biotechnology and Biological Sciences Research Council of the United Kingdom for their grant-aided support.

We offer our sincere apologies to those whose contributions could not be included here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archie R. Portis Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portis, A.R., Parry, M.A.J. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94, 121–143 (2007). https://doi.org/10.1007/s11120-007-9225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9225-6

Keywords

Navigation