Skip to main content
Log in

Differential distribution of chlorophyll biosynthetic intermediates in stroma, envelope and thylakoid membranes in Beta vulgaris

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Stroma, envelope and thylakoid membranes were prepared from chloroplasts isolated from leaves of Beta vulgaris. Out of total plastidic protochlorophyllide, envelope membranes contained 1.5%, thylakoids had the maximum 98.48% and stroma had a trace fraction of 0.02%. Distribution of the Mg-protoporphyrin IX and its monoester was 89.0% in thylakoids, 10.0% in stroma and 1.0% in envelope. A substantial fraction (33.77%) of plastidic protoporphyrin IX was partitioned into stroma. Envelope contained 0.66% and thylakoids had 65.57% of the total plastidic protoporphyrin IX pool. The proportion of monovinyl and divinyl forms of protochlorophyllide was almost similar in intact plastid, thylakoids, and outer and inner envelope membranes suggesting a tight regulation of vinyl reductase enzyme. The significance of differential distribution of chlorophyll biosynthetic intermediates among thylakoids, envelope and stroma is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

Chl:

Chlorophyll

Chlide:

Chlorophyllide

DV Pchlide:

Divinyl protochlorophyllide

HEAR:

Hexane extracted acetone residue solvent mixture

LHCP II:

Light harvesting chlorophyll protein complex II

MP(E):

Mg-protoporphyrin IX + its monoester

MV Pchlide:

Monovinyl protochlorophyllide

Pchlide :

Protochlorophyllide

Proto IX:

Protoporphyrin IX

References

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Barthelemy X, Bouvier G, Radunz A, Docquier S, Schimd GH, Franck F (2000) Localization of NADPH-protochlorophyllide reductase in plastids of barley at different greening stages. Photosynth Res 64:63–76

    Article  PubMed  CAS  Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J (2002) The plant S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269:240–248

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty N, Tripathy BC (1992) Involvement of singlet oxygen in 5-aminolevulinicacid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiol 98:7–11

    PubMed  CAS  Google Scholar 

  • Coves J, Block MA, Joyard J, Douce R (1986) Solubilization and partial purification of UDPgalactose: diacylglycerol galactosyltransferase activity from spinach chloroplast envelope. FEBS Lett 208:401–406

    Article  CAS  Google Scholar 

  • Douce R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216

    Article  PubMed  CAS  Google Scholar 

  • Eichacker LA, Soll J, Lauterbach P, Rudiger W, Klein RR, Mullet JE (1990) In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 265:13566–13571

    PubMed  CAS  Google Scholar 

  • Grafe S, Saluz HP, Grimm B, Hanel F (1999) Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX. Proc Natl Acad Sci USA 96:1941–1946

    Article  PubMed  CAS  Google Scholar 

  • Hukmani P, Tripathy BC (1992) Spectrofluorometric estimation of intermediates of chlorophyll biosynthesis: protoporphyrin IX, Mg-Protoporphyrin and Protochlorophyllide. Anal Biochem 206:125–130

    Article  PubMed  CAS  Google Scholar 

  • Hukmani P, Tripathy BC (1994) Chlorophyll biosynthetic reactions during senescence of excised barley (Hordeum vulgare L. cv IB 65) leaves. Plant Physiol 105:1295–1300

    PubMed  CAS  Google Scholar 

  • Jilani A, Kar S, Bose S, Tripathy BC (1996) Regulation of the carotenoid content and chloroplast development by levulinic acid. Physiol Plant 96:139–145

    Article  CAS  Google Scholar 

  • Johanningmeier U, Howell SH (1984) Regulation of Light-harvesting Chlorophyll-binding Protein mRNA Accumulation in Chlamydomonas reinhardi. J Biol Chem 259:13541–13549

    PubMed  CAS  Google Scholar 

  • Joyard J, Block M, Pineau B, Albrieux C, Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH: protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265:21820–21827

    PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Miège C, Berny-Seigneurin D, Marèchal E, Block MA, Dorne AJ, Rolland N, Ajlani G, Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118:715–723

    Article  PubMed  CAS  Google Scholar 

  • Kannangara CG, Andersen RV, Pontoppidan B, Willows R, von Wettstein D (1994) Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolevulinate. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments, Ciba Foundation Symposium 180. Wiley, England, pp 3–20

    Chapter  Google Scholar 

  • Kannangara CG, Vothknecht UC, Hansson M, von Wettstein D (1997) Magnesium chelatase: association with ribosomes and mutant complementation studies identify subunit Xantha-G as a functional counterpart of the Rhodobacter subunit BchD. Mol Gen Genet 254:85–92

    Article  PubMed  CAS  Google Scholar 

  • Keegstra K, Yousuf AE (1986) Isolation and characterization of chloroplast envelope membranes. Methods Enzymol 118:316–325

    CAS  Google Scholar 

  • King TE (1967) Preparation of succinate-cytochrome C reductase and the cytochrome b-c1,particle and reconstitution of succinate cytochrome C reductase. Methods Enzymol 10:216–225

    Article  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W, Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94:14168–14172

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W, Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24:523–531

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R, Rebeiz CA (1992) Chloroplast biogenesis 65: Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99:1134–1140

    PubMed  CAS  Google Scholar 

  • Lermontova I, Kruse E, Mock HP, Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900

    Article  PubMed  CAS  Google Scholar 

  • Li HM, Moore T, Keegstra K (1991) Targeting of proteins to the outer envelope membrane uses a different pathway than transport into chloroplasts. Plant Cell 3:709–717

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manohara MS, Tripathy BC (2000) Regulation of Protoporphyrin IX biosynthesis by intraplastidic compartmentalization and adenosine triphosphate. Planta 212:52–59

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409

    PubMed  CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95

    Article  PubMed  CAS  Google Scholar 

  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R (1992) Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for Diphenylether like herbicides. J Biol Chem 267:4646-4651

    PubMed  CAS  Google Scholar 

  • Mohapatra A, Tripathy BC (2002) Detection of protoporphyrin IX in envelope membranes of pea chloroplasts. Biochem Biophys Res Commun 299:751–754

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra A, Tripathy BC (2003) Developmental changes in sub-plastidic distribution of chlorophyll biosynthetic intermediates in cucumber (Cucumis sativus L). J Plant Physiol 160:9–15

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y, Takamiya K (1995) Cloning, subcellular localization and expression of CHL I, a subunit of magnesium-chelatase in soybean. Biochem Biophys Res Commun 215:422–428

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K (1998) Cloning and expression of the soybean chl H gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent Chl H protein within the chloroplast. Plant Cell Physiol 39:275–284

    PubMed  CAS  Google Scholar 

  • Papenbrock J, Gräfe S, Kruse E, Hänel F, Grimm B (1997) Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12:981–990

    Article  PubMed  CAS  Google Scholar 

  • Pineau B, Dubertret G, Joyard J, Douce R (1986) Fluorescence properties of the envelope membranes from spinach chloroplasts: Detection of protochlorophyllide. J Biol Chem 261:9210–9215

    PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rebeiz CA, Matheis JR, Smith BB, Rebeiz CC, Dayton DF (1975) Chloroplast biogenesis: biosynthesis and accumulation of Mg-protoporphyrin IX monoester and longer wavelength metalloporphyrins by greening cotyledons. Arch Biochem Biophys 166:446–465

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Hopen HJ, Wu SM (1984) Photodynamic herbicides. I. Concept and phenomenology. Enzyme Microbiol Technol 6:390–401

    Article  CAS  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber (Cucumis sativus L) and wheat (Triticum aestivum L). Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Tewari AK, Tripathy BC (1999) Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L). Planta 208:431–437

    Article  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyllides by spectrofluorometry. Analytical Biochem 149:43–61

    Article  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis: demonstration of monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast Biogenesis 60: conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in greening barley, a dark monovinyl/ light divinyl plant species. Plant Physiol 87:89–94

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Article  Google Scholar 

  • Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Kenneth Keegstra, East Lansing, USA for OM 14 antibodies and Dr. A Matto, Beltsville, USA for LHCPII antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baishnab C. Tripathy.

Additional information

This work was supported by a grant from the Council of Scientific and Industrial Research (38/1079/03/EMRII) to BCT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, A., Tripathy, B.C. Differential distribution of chlorophyll biosynthetic intermediates in stroma, envelope and thylakoid membranes in Beta vulgaris . Photosynth Res 94, 401–410 (2007). https://doi.org/10.1007/s11120-007-9209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9209-6

Keywords

Navigation