Skip to main content

Advertisement

Log in

Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Ghany SE, Mueller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-Type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    PubMed  CAS  Google Scholar 

  • Alawady A, Reski R, Yaronskaya E, Grimm B (2005) Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol Biol 57:679–691

    PubMed  CAS  Google Scholar 

  • Aldridge C, Maple J, Møller SG (2005) The molecular biology of plastid division in higher plants. J Exp Bot 56:1061–1077

    PubMed  CAS  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    PubMed  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    PubMed  CAS  Google Scholar 

  • Andersson MX, Goksor M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282:1170–1174

    PubMed  CAS  Google Scholar 

  • Andrews J, Ohlrogge JB, Keegstra K (1985) Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol 78:459–465

    PubMed  CAS  Google Scholar 

  • Archer EK, Keegstra K (1990) Current views on chloroplast protein import and hypotheses on the origin of the transport mechanism. J Bioenerg Biomembr 22:789–810

    PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965

    PubMed  CAS  Google Scholar 

  • Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822

    PubMed  CAS  Google Scholar 

  • Babiychuk E, Muller F, Eubel H, Braun HP, Frentzen M, Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909

    PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, Gaymard F, Rolland N, Joyard J (2001) Strategies to identify transport systems in plants. Trends Plant Sci 6:577–585

    PubMed  CAS  Google Scholar 

  • Bauer J, Chen K, Hiltbunner A, Wehrli E, Eugster M, Schnell D, Kessler F (2000) The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403:203–207

    PubMed  CAS  Google Scholar 

  • Bedard J, Jarvis P (2005) Recognition and envelope translocation of chloroplast preproteins. J Exp Bot 56:2287–2320

    PubMed  CAS  Google Scholar 

  • Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rebeille F, Ravanel S (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280:34823–34831

    PubMed  CAS  Google Scholar 

  • Benning C, Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280:2397–2400

    PubMed  CAS  Google Scholar 

  • Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:241–247

    PubMed  CAS  Google Scholar 

  • Benson AA (1964) Plant membrane lipids. Annu Rev Plant Physiol 15:1–16

    CAS  Google Scholar 

  • Benson AA, Wiser R, Ferrari RA, Miller JA (1958) Photosynthesis of galactolipids. J Am Chem Soc 80:4740

    CAS  Google Scholar 

  • Bessoule JJ, Testet E, Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic reticulum membranes. Eur J Biochem 228:490–497

    PubMed  CAS  Google Scholar 

  • Billecocq A (1975) Structure des membranes biologiques: localisation du sulfoquinovosyldiglycéride dans les diverses membranes des chloroplastes au moyen des anticorps spécifiques. Ann Imunol (Institut Pasteur) 126C:337–352

    CAS  Google Scholar 

  • Billecocq A, Douce R, Faure M (1972) Structure des membranes biologiques : localisation des galactosyldiglycérides dans les chloroplastes au moyen des anticorps spécifiques. CR Acad Sci Paris 275:1135–1137

    CAS  Google Scholar 

  • Blée E, Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110:445–454

    PubMed  Google Scholar 

  • Block MA, Joyard J, Douce R (1980) Site of synthesis of geranylgeraniol derivatives in intact spinach chloroplasts. Biochim Biophys Acta 631:210–219

    PubMed  CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983a) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts, I-Electrophoresis and immunochemical analyses. J Biol Chem 258:13273–13280

    PubMed  CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983b) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286

    PubMed  CAS  Google Scholar 

  • Block MA, Joyard J, Douce R (1991) Purification and characterization of E37, a major chloroplast envelope protein. FEBS Lett 287:167–170

    PubMed  CAS  Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Maréchal E, Joyard J (2002) The plant S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269:240–248

    PubMed  CAS  Google Scholar 

  • Bölter B, Soll J, Hill K, Hemmler R, Wagner R (1999) A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea. EMBO J 18:5505–5516

    PubMed  Google Scholar 

  • Bouvier F, Linka N, Isner JC, Mutterer J, Weber AP, Camara B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18:3088–3105

    PubMed  CAS  Google Scholar 

  • Bredemeier R, Schlegel T, Ertel F, Vojta A, Borissenko L. Bohnsack MT, Groll M, Von Haeseler A, Schleiff E (2007) Functional and phylogenetic properties of the pore-forming beta-barrel transporters of the Omp85 family. J Biol Chem 282:1882–1890

    PubMed  CAS  Google Scholar 

  • Brix J, Rudiger S, Bukau B, Schneider-Mergener J, Pfanner N (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem 274:16522–16530

    PubMed  CAS  Google Scholar 

  • Chen X, Schnell DJ (1999) Protein import into chloroplasts. Trends Cell Biol 9:222–227

    PubMed  CAS  Google Scholar 

  • Cline K, Henry R (1996) Import and routing of nucleus-encoded chloroplast proteins. Annu Rev Cell Dev Biol 12:1–26

    PubMed  CAS  Google Scholar 

  • Costes C, Burghoffer C, Joyard J, Block MA, Douce R (1979) Occurence and biosynthesis of violaxanthin in isolated spinach chloroplast envelope. FEBS Lett 103:17–21

    CAS  Google Scholar 

  • Cruz Ramirez A, Oropeza Aburto A, Razo Hernandez F, Ramirez Chavez E, Herrera Estrella L (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11:2153–2166

    PubMed  CAS  Google Scholar 

  • Diekert K, Kispal G, Guiard B, Lill R (1999) An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci USA 96:11752–11757

    PubMed  CAS  Google Scholar 

  • Dormann P (2007) Functional diversity of tocochromanols in plants. Planta 225:269–276

    PubMed  Google Scholar 

  • Douce R (1974) Site of galactolipid synthesis in spinach chloroplasts. Science 183:852–853

    CAS  PubMed  Google Scholar 

  • Douce R, Joyard J (1979) Structure and function of the plastid envelope. Adv Bot Res 7:1–116

    CAS  Google Scholar 

  • Douce R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216

    PubMed  CAS  Google Scholar 

  • Douce R, Holtz RB, Benson AA (1973) Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem 248:7215–7222

    PubMed  CAS  Google Scholar 

  • Douce R, Block MA, Dorne AJ, Joyard J (1984) The plastid envelope membranes: their structure, composition and role in chloroplast biogenesis. Subcell Biochem 10:1–84

    PubMed  CAS  Google Scholar 

  • Dorne AJ, Joyard J, Block MA, Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100:1690–1697

    PubMed  CAS  Google Scholar 

  • Eckart K, Eichacker L, Sohrt K, Schleiff E, Heins L, Soll J (2002) A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep 3:557–562

    PubMed  CAS  Google Scholar 

  • Ephritikhine G, Ferro M, Rolland N (2004) Plant membrane proteomics. Plant Physiol Biochem 42:943–962

    PubMed  CAS  Google Scholar 

  • Essigmann B, Hespenheide BM, Kuhn LA, Benning C (1999) Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 369:30–41

    PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Rivière-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99:11487–11492

    PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Flügge UI (1999) Phosphate translmocators in plastids. Annu Rev Plant Physiol Plant Mol Biol 50:27–45

    PubMed  Google Scholar 

  • Flügge UI, Gao W (2005) Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol (Stuttg) 7:91–97

    Google Scholar 

  • Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Eckerskorn C (1989) The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8:39–46

    PubMed  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270–276

    PubMed  CAS  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E (2006) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625

    PubMed  Google Scholar 

  • Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS 2003 Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2:413–425

    PubMed  Google Scholar 

  • Gadjieva R, Axelsson E, Olsson U, Hansson M (2005) Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants. Plant Physiol Biochem 43:901–908

    PubMed  CAS  Google Scholar 

  • Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M (1997) Subcellular locolization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325:761–769

    PubMed  CAS  Google Scholar 

  • Gibson LC, Willows RD, Kannangara CG, von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92:1941–1944

    PubMed  CAS  Google Scholar 

  • Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R (2006) OEP37 is a new member of the chloroplast outer membrane ion channels. J Biol Chem 281:17989–17998

    PubMed  CAS  Google Scholar 

  • Gunning BE (2005) Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma 225:33–42

    PubMed  Google Scholar 

  • Gutensohn M, Schulz B, Nicolay P, Flugge UI (2000) Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus. Plant J 23:771–783

    PubMed  CAS  Google Scholar 

  • Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hust B, Klösgen RB (2006) Toc, Tic, Tat et al: structure and function of protein transport machineries in chloroplasts. J Plant Physiol 163:333–347

    PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464

    PubMed  CAS  Google Scholar 

  • Härtel H, Essigmann B, Lokstein H, Hoffmann-Benning S, Peters-Kottig M, Benning C (1998) The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membrane. Biochim Biophys Acta 1415:205–218

    PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    PubMed  Google Scholar 

  • Hartmann-Bouillon MA, Benveniste P (1987) Plant membrane sterols: Isolation, identification, and biosynthesis. Methods Enzymol 148:632–650

    Google Scholar 

  • Hashimoto H (2003) Plastid division: its origins and evolution. Int Rev Cytol 222:63–98

    PubMed  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11

    PubMed  CAS  Google Scholar 

  • Heber U (1974) Metabolite exchange between chloroplasts and cytoplasm. Annu Rev Plant Physiol 25:393–421

    CAS  Google Scholar 

  • Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Tevini A, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer-Verlag, Berlin, pp 102–120

    Google Scholar 

  • Heinz E, Harwood JL (1977) Incorporation of carbon dioxide, acetate and sulphate into the glycerolipids of Vicia faba leaves. Hoppe Seylers Z Physiol Chem 358:897–908

    PubMed  CAS  Google Scholar 

  • Heinz E, Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279

    PubMed  CAS  Google Scholar 

  • Heldt HW (1976) Metabolite transport in intact spinach chloroplasts. In: Barber J (ed) The intact chloroplast. Elsevier, Amsterdam, pp 215–234

    Google Scholar 

  • Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES (2001) A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28:201–208

    PubMed  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    PubMed  CAS  Google Scholar 

  • Hemmler R, Becker T, Schleiff E, Bolter B, Stahl T, Soll J, Gotze TA, Braams S, Wagner R (2006) Molecular properties of Oep21, an ATP-regulated anion-selective solute channel from the outer chloroplast membrane. J Biol Chem 281:12020–12029

    PubMed  CAS  Google Scholar 

  • Hofmann NR, Theg SM (2005) Chloroplast outer membrane protein targeting and insertion. Trends Plant Sci 10:450–457

    PubMed  CAS  Google Scholar 

  • Hoober JK, Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61:197–215

    CAS  Google Scholar 

  • Ishida K (2005) Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids. J Plant Res 118:237–245

    PubMed  Google Scholar 

  • Ivanova Y, Smith MD, Chen K, Schnell DJ (2004) Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol Biol Cell 15:3379–3392

    PubMed  CAS  Google Scholar 

  • Jackson-Constan D, Akita M, Keegstra K (2001) Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta 1541:102–113

    PubMed  CAS  Google Scholar 

  • Jarvis P, Soll J (2002) Toc, tic, and chloroplast protein import. Biochim Biophys Acta 1590:177–189

    PubMed  CAS  Google Scholar 

  • Jarvis P, Chen LJ, Li H, Peto CA, Fankhauser C, Chory J (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100–103

    PubMed  CAS  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179

    PubMed  CAS  Google Scholar 

  • Jeffrey SW, Douce R, Benson AA (1974) Carotenoid transformations in the chloroplast envelope. Proc Natl Acad Sci USA 71:807–810

    PubMed  CAS  Google Scholar 

  • Jelic M, Soll J, Schleiff E (2003) Two Toc34 homologues with different properties. Biochemistry 42:5906–5916

    PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Bligny R, Joyard J, Block MA (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544:63–68

    PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55

    PubMed  CAS  Google Scholar 

  • Joyard J, Douce R (1979) Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes. FEBS Lett 102:147–150

    PubMed  CAS  Google Scholar 

  • Joyard J, Billecocq A, Bartlett SG, Block MA, Chua NH, Douce R (1983) Localization of polypeptides to the cytosolic side of the outer envelope membrane of spinach chloroplast. J Biol Chem 258:10000–10006

    PubMed  CAS  Google Scholar 

  • Joyard J, Block MA, Pineau B, Albrieux C, Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265:21820–21827

    PubMed  CAS  Google Scholar 

  • Keegstra K, Cline K (1999) Protein import and routing systems of chloroplasts. Plant Cell 11:557–570

    PubMed  CAS  Google Scholar 

  • Keegstra K, Froehlich JE (1999) Protein import into chloroplasts. Curr Opin Plant Biol 2:471–476

    PubMed  CAS  Google Scholar 

  • Kelly AA, Dormann P (2004) Green light for galactolipid trafficking. Curr Opin Plant Biol 7:262–269

    PubMed  CAS  Google Scholar 

  • Kessler F, Schnell DJ (2006) The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic 7:248–257

    PubMed  CAS  Google Scholar 

  • Klaus D, Hartel H, Fitzpatrick LM, Froehlich JE, Hubert J, Benning C, Dörmann P (2002) Digalactosyldiacylglycerol synthesis in chloroplasts of the Arabidopsis dgd1 mutant. Plant Physiol 128:885–895

    PubMed  CAS  Google Scholar 

  • Klaus SM, Kunji ER, Bozzo GG, Noiriel A, de la Garza RD, Basset GJ, Ravanel S, Rébeillé F, Gregory JF III, Hanson AD (2005) Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids. J Biol Chem 280:38457–38463

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Awai K, Takamiya K, Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134:640–648

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Masuda T, Takamiya KI, Ohta H (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 47:238–248

    PubMed  CAS  Google Scholar 

  • Koo AJ, Ohlrogge JB (2002) The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. Plant Physiol 130:823–836

    PubMed  Google Scholar 

  • Kouranov A, Schnell DJ (1997) Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts. J Cell Biol 139:1677–1685

    PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rudiger W, Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24:523–531

    PubMed  CAS  Google Scholar 

  • Kubis S, Patel R, Combe J, Bedard J, Kovacheva S, Lille K, Biehl A, Leister D, Rios G, Koncz C, Jarvis P (2004) Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16:2059–2077

    PubMed  CAS  Google Scholar 

  • Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181:1–41

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948

    PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    PubMed  CAS  Google Scholar 

  • Li M, Qin C, Welti R, Wang XM (2006a) Double knockouts of phospholipases D{zeta}1 and D{zeta}2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    PubMed  CAS  Google Scholar 

  • Li MY, Welti R, Wang XM (2006b) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of Phospholipases D zeta 1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiology 142:750–761

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel H, Douce R, Joyard J (1981) Localization of prenylquinones in the envelopes of spinach chloroplasts. Biochim Biophys Acta 641:99–105

    PubMed  CAS  Google Scholar 

  • Maple J, Møller SG (2006) Plastid division: evolution, mechanism and complexity. Ann Bot 99:565–579

    PubMed  Google Scholar 

  • Maréchal E, Cesbron-Delauw MF (2001) The apicoplast: a new member of the plastid family. Trends Plant Sci 6:200–205

    PubMed  Google Scholar 

  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R (1992) Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem 267:4646–4651

    PubMed  CAS  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–64

    PubMed  CAS  Google Scholar 

  • Mayfield SP, Taylor WC (1984) Carotenoid-deficient maize seedlings fail to accumulate light- harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur J Biochem 144:79–84

    PubMed  CAS  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R, Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265:990–1001

    PubMed  Google Scholar 

  • Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J, Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277:47770–47778

    PubMed  CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    PubMed  CAS  Google Scholar 

  • Miyagishima SY, Nishida K, Kuroiwa T (2003) An evolutionary puzzle: chloroplast and mitochondrial division rings. Trends Plant Sci 8:432–438

    PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    PubMed  CAS  Google Scholar 

  • Mongrand S, Bessoule JJ, Cabantous F, Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochem 49:1049–1064

    CAS  Google Scholar 

  • Motohasi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using Ds-tagged Arabidopsis pale-green mutant. Plant J 34:719–731

    Google Scholar 

  • Muller F, Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 509:298–302

    PubMed  CAS  Google Scholar 

  • Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgartner M, Philippar K, Carrie C, Mokranjac D, Soll J, Whelan J (2007) Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol 143:199–212

    PubMed  CAS  Google Scholar 

  • Nada A, Soll J (2004) Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117:3975–3982

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-Chelatase and localization of the Mg2+ concentration-cependent ChlH protein within the chloroplast. Plant Cell Physiol 39:275–284

    PubMed  CAS  Google Scholar 

  • Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, Munoz FJ, Rodriguez-Lopez M, Baroja-Fernandez E, Pozueta-Romero J (2006) Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway. Plant Cell 18:2582–2592

    PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26

    PubMed  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    PubMed  CAS  Google Scholar 

  • Ortiz-Lopez A, Chang HC, Bush DR (2001) Amino acid transporters in plants. Biochim Biophys Acta 1465:275–280

    Google Scholar 

  • Osteryoung KW (2001) Organelle fission in eukaryotes. Curr Opin Microbiol 4:639–646

    PubMed  CAS  Google Scholar 

  • Palmieri L, Arrigoni R, Blanco E, Carrari F, Zanor MI, Studart-Guimaraes C, Fernie AR, Palmieri F (2006) Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization. Plant Physiol 142:855–865

    PubMed  CAS  Google Scholar 

  • Pain D, Blobel G (1987) Protein import into chloroplasts requires a chloroplast ATPase. Proc Natl Acad Sci USA 84:3288–3292

    PubMed  CAS  Google Scholar 

  • Papenbrock J, Grafe S, Kruse E, Hanel F, Grimm B (1997) Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12:981–990

    PubMed  CAS  Google Scholar 

  • Paulsen H (2001) Pigment assembly-transport and ligation. In: Aro EM, Andersson B (eds) Regulation of photosynthesis. Advances in photosynthesis and respiration, vol 11. Springer, Dordrecht, pp 219–233

    Google Scholar 

  • Pierre Y, Chabaud E, Hervé P, Zito F, Popot JL (2003) Site-directed photochemical coupling of cytochrome b6f-associated chlorophyll. Biochemistry 42:1031–1041

    PubMed  CAS  Google Scholar 

  • Pineau B, Dubertret G, Joyard J, Douce R (1986) Fluorescence properties of the envelope membranes from spinach. J Biol Chem 261:9210–9215

    PubMed  CAS  Google Scholar 

  • Pineau B, Gérard-Hirne C, Douce R, Joyard J (1993) Identification of the Main Species of Tetrapyrrolic Pigments in Envelope Membranes from Spinach Chloroplasts. Plant Physiol 102:821–828

    PubMed  CAS  Google Scholar 

  • Pohlmeyer K, Soll J, Steinkamp T, Hinnah S, Wagner R (1997) Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc Natl Acad Sci USA 94:9504–9509

    PubMed  CAS  Google Scholar 

  • Pohlmeyer K, Soll J, Grimm R, Hill K, Wagner R (1998) A high-conductance solute channel in the chloroplastic outer envelope from Pea. Plant Cell 10:1207–1216

    PubMed  CAS  Google Scholar 

  • Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282:2297–2304

    PubMed  CAS  Google Scholar 

  • Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rébeillé F (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:15360–15365

    PubMed  CAS  Google Scholar 

  • Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279:22548–22557

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Holtorf H, Apel K (1995) Two NADPH: protochlorophyllide oxidoreductases in Barley: evidence for the selective disappearance of PORA during the light-induced greening of etiolated seedlings. Plant Cell 7:1933–1940

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Mache R, Reinbothe C (2000) A second, substrate-dependent site of protein import into chloroplasts. Proc Natl Acad Sci USA 97:9795–9800

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Quigley F, Gray J, Schemenewitz A, Reinbothe C (2004) Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into chloroplast of barley. Proc Natl Acad Sci USA 101:2197–2202

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade Paz R, Monnet J, Reinbothe S (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA 103:4777–4782

    PubMed  CAS  Google Scholar 

  • Renne P, Dressen U, Hebbeker U, Hille D, Flügge UI, Westhoff P, Weber AP (2003) The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 35:316–331

    PubMed  CAS  Google Scholar 

  • Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway of plastids. Mol Membr Biol 22:73–86

    PubMed  CAS  Google Scholar 

  • Richter S, Lamppa GK (2003) Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. J Biol Chem 277:43888–43894

    Google Scholar 

  • Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Douce R, Joyard J (2003) Proteomics of chloroplast envelope membranes. Photosynth Res 78:205–230

    PubMed  CAS  Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891

    PubMed  CAS  Google Scholar 

  • Schleiff E, Klösgen RB (2001) Without a little help from “my” friends: direct insertion of proteins into chloroplast membranes? Biochim Biophys Acta 1541:22–23

    PubMed  CAS  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129:1700–1709

    PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    PubMed  CAS  Google Scholar 

  • Seifert U, Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose-diacylglycerol sulfoquinovosyltransferase from chloroplast envelopes. Bot Acta 105:197–205

    CAS  Google Scholar 

  • Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Rolland N, Garin J, Joyard J (1999) Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19:217–228

    PubMed  CAS  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    PubMed  CAS  Google Scholar 

  • Siebertz HP, Heinz E, Linscheid M, Joyard J, Douce R (1979) Characterization of lipids from chloroplast envelopes. Eur J Biochem 101:429–438

    PubMed  CAS  Google Scholar 

  • Siefermann-Harms D, Joyard J, Douce R (1978) Light-induced changes of the carotenoid levels in chloroplast envelopes. Plant Physiol 61:530–533

    Article  PubMed  CAS  Google Scholar 

  • Slack CR, Roughan PG, Balasingham N (1977) Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem J 162:289–296

    PubMed  CAS  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    PubMed  CAS  Google Scholar 

  • Soll J, Schultz G (1980) 2-methyl-6-phytylquinol and 2,3-dimethyl-5-phytylquinol as precursors of tocopherol synthesis in spinach chloroplasts. Phytochemistry 19:215–218

    CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238:290–299

    PubMed  CAS  Google Scholar 

  • Steiner JM, Loffelhardt W (2005) Protein translocation into and within cyanelles. Mol Membr Biol 22:123–132

    PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    PubMed  CAS  Google Scholar 

  • Sun Q, Emanuelsson O, van Wijk KJ (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol 135:723–734

    PubMed  CAS  Google Scholar 

  • Teyssier E, Block MA, Garin J, Joyard J, Douce R (1995) The outer membrane protein E24 of spinach chloroplast envelope: cloning of a cDNA and topological insertion of the protein in the membrane. CR Acad Sci Paris 318:17–25

    CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits. Arch Biochem Biophys 400:245–257

    PubMed  CAS  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen P E (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100:16119–16124

    PubMed  CAS  Google Scholar 

  • Tranel PJ, Keegstra K (1996) A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. Plant Cell 8:2093–2104

    PubMed  CAS  Google Scholar 

  • Tsai LY, Tu SL, Li HM (1999) Insertion of atToc34 into the chloroplastic outer membrane is assisted by at least two proteinaceous components in the import system. J Biol Chem 274:18735–18740

    PubMed  CAS  Google Scholar 

  • Tu SL, Li HM (2000) Insertion of OEP14 into the outer envelope membrane is mediated by proteinaceous components of chloroplasts. Plant Cell 12:1951–1960

    PubMed  CAS  Google Scholar 

  • Tu SL, Chen LJ, Smith MD, Su YS, Schnell DJ, Li HM (2004) Import pathways of chloroplast interior proteins and the outer-membrane protein OEP14 converge at Toc75. Plant Cell 16:2078–2088

    PubMed  CAS  Google Scholar 

  • Versaw WK, Harrison MK (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    PubMed  CAS  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Proteomics identify Arabidopsis plastoglobules as a major site in tocopherol synthesis and accumulation. J Biol Chem 281:11225–11234

    PubMed  CAS  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    PubMed  Google Scholar 

  • Vothknecht UC, Soll J (2005) Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits. Gene 354:99–109

    PubMed  CAS  Google Scholar 

  • Walker DA (1976) CO2 fixation by intact spinach chloroplasts. In: Barber J (ed) The intact chloroplast. Elsevier, Amsterdam, pp 235–278

    Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2002) Polymerase chain reaction-based mutageneses identify key transporters belonging to multigene families involved in Na+ and pH homeostasis of Synechocystis sp. PCC 6803. Mol Microbiol 44:1493–1506

    PubMed  CAS  Google Scholar 

  • Weber AP, Schneidereit J, Voll LM (2004) Using mutants to probe the in vivo function of plastid envelope membrane metabolite transporters. J Exp Bot 55:1231–1244

    PubMed  CAS  Google Scholar 

  • Weber AP, Schwacke R, Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56:133–164

    PubMed  Google Scholar 

  • White RA, Wolfe GR, Komine Y, Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamydomonas reinhardtii at 38°C. Photosynth Res 47:267–280

    CAS  Google Scholar 

  • Willows RD, Gibson LC, Kanangara CG, Hunter CN, von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235:438–443

    PubMed  CAS  Google Scholar 

  • Xu CC, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110

    PubMed  CAS  Google Scholar 

  • Yamamoto HY (2006) Functional roles of the major chloroplast lipids in the violaxanthin cycle. Planta 224:719–724

    PubMed  CAS  Google Scholar 

  • Yamamoto HY, Bugos RC, Hieber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) Advances in photosynthesis. The photochemistry of carotenoids, vol 8. Kluwer, Dordrecht, pp 293–303

    Google Scholar 

  • Ytterberg AJ, Peltier J-B, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    PubMed  CAS  Google Scholar 

  • Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–5737

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful (RD) to my teacher and friend Andrew Benson for the guidance and training he gave me during the early part of my research carrier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Joyard.

Additional information

Special Issue of Photosynthesis Research in honor of Andrew A. Benson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, M.A., Douce, R., Joyard, J. et al. Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92, 225–244 (2007). https://doi.org/10.1007/s11120-007-9195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9195-8

Keywords

Navigation