Skip to main content
Log in

The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the μs-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 → 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 → 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Ax:

Antheraxanthin

Chl:

Chlorophyll

CPC:

C-phycocyanin

DCMU:

3-(3,4-Dichlorophenyl)-1,4-dimethyl urea

FI:

Fluorescence induction

LHC:

Light harvesting complex

PBP:

Phycobiliprotein

PBS:

Phycobilisome

Pheo:

Pheophytin a

PQ:

Plastoquinone pool

PS I, PS II:

Photosystem I, Photosystem II

PSET:

Photosynthetic electron transport

q(E):

Quenching due to membrane energization processes

q(N)/de-q(N):

Nonphotochemical quenching/de-quenching processes

q(P)/de-q(P):

Photochemical quenching/de-quenching processes

q(T1 → 2)/q(T2 → 1):

Fluorescence lowering/increase due to state 1 → 2 and state 2 → 1 transitions

q(I):

Fluorescence lowering due to photoinhibitory processes

q(ΔpH):

Fluorescence quenching due to transmembrane ΔpH

RC I, RC II:

Reaction centers of PS I, PS II

RSET:

Respiratory electron transport

Zx:

Zeaxanthin

References

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    PubMed  CAS  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy. Kinetics and imaging. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 447–461

    Google Scholar 

  • Arnon DI, Tsujimoto HY, McSwain BD (1965) Quenching of chloroplast fluorescence by photosynthetic phosphorylation and electron transfer. Proc Natl Acad Sci USA 54:927–934

    PubMed  CAS  Google Scholar 

  • Bannister TT, Rice G (1968) Parallel time courses of oxygen evolution and chlorophyll fluorescence. Biochim Biophys Acta 162:555–580

    PubMed  CAS  Google Scholar 

  • Barber J (1976) Ionic regulation in intact chloroplasts and its effect on primary photosynthetic processes. In: Barber J (ed) The intact chloroplast, topics in photosynthesis vol 1. Elsevier, Amsterdam, pp 89–134

    Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Ann Rev Plant Physiol 33:261–295

    CAS  Google Scholar 

  • Barber J (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80:137–144

    PubMed  CAS  Google Scholar 

  • Barber J, Telfer A, Nicolson J (1974) Evidence for divalent cation movement within isolated whole chloroplasts from studies with ionophore A23187. Biochim Biophys Acta 357:161–165

    PubMed  CAS  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    PubMed  CAS  Google Scholar 

  • Boichenko VA, Klimov VV, Miyashita H, Miyachi S (2000) Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. Photosynth Res 65:269–277

    PubMed  CAS  Google Scholar 

  • Bradbury M, Baker NE (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of Photosystem II electron acceptors and fluorescence emission from Photosystems I and II. Biochim Biophys Acta 635:542–551

    PubMed  CAS  Google Scholar 

  • Bradbury M, Baker NR (1984) A quantitative determination of photochemical and non-photochemical quenching during the slow phase of the chlorophyll fluorescence induction curve of bean leaves. Biochim Biophys Acta 765:275–281

    CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M, Krause GH (1979). A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    PubMed  CAS  Google Scholar 

  • Briantais JM, Vernotte C, Krause GH, Weis E (1986) Chlorophyll a flurescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, New York, pp 539–583

    Google Scholar 

  • Bruce D, Vasil’ev S (2004) Excess light stress: multiple dissipative processes of excess excitation. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 497–523

    Google Scholar 

  • Bruce D, Samson G, Carpenter C (1997) The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in Photosystem II enriched membranes at low pH. Biochemistry 36:749–755

    PubMed  CAS  Google Scholar 

  • Bukhov NG, Carpentier R (2004) Effects of water stress on the photosynthetic efficiency of plants. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 623–635

    Google Scholar 

  • Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Natl Acad Sci USA 69:3420–3442

    PubMed  CAS  Google Scholar 

  • Butler WL, Strasser RJ (1977) Tripartite model for the photochemical apparatus of green plant photosynthesis. Proc Natl Acad Sci USA 74:3382–3385

    PubMed  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder R, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in Photosystem I from Synechococcus elongatus with P700 reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79:992–1007

    PubMed  CAS  Google Scholar 

  • Campbell D, Öquist G (1996) Predicting light acclimation in cyanobacteria from nonphotochemical quenching of Photosystem II fluorescence, which reflects state transitions in these organisms. Plant Physiol 111:1293–1298

    PubMed  CAS  Google Scholar 

  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes. Biochim Biophys Acta 1015:180–188

    PubMed  CAS  Google Scholar 

  • Crofts AR, Yerkes CT (1994) A molecular mechanism for qE-quenching. FEBS Lett 352:265–270

    PubMed  CAS  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    PubMed  CAS  Google Scholar 

  • Delosme R (1967) Étude de l’induction de fluorescence des algues vertes et des chloroplastes au debut d’une illumination intense. Biochim Biophys Acta 143:108–128

    PubMed  CAS  Google Scholar 

  • Den Haan GA, Duysens LNM, Egberts DJN (1974) Fluorescence yield kinetics in the microsecond-range in Chlorella pyrenoidosa and spinach chloroplasts in the presence of hydroxylamine. Biochim Biophys Acta 368:409–421

    Google Scholar 

  • Deprez J, Dobek A, Geacintov NE, Paillotin G, Breton J (1983) Probing fluorescence induction in chloroplasts on a nanosecond time scale utilizing picosecond laser pulse pairs. Biochim Biophys Acta 725:444–454

    CAS  Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (eds) Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, pp 353–371

  • Falkowski PG, Kolber Z, Mauzerall D (1994) A comment on the call to throw away your fluorescence induction apparatus. Biophys J 66:923–928

    PubMed  CAS  Google Scholar 

  • Falkowski PG, Koblizek M, Gorbunov M, Kolber Z (2004) Development and application of variable chlorophyll fluorescence techniques in marine ecosystems. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 757–778

    Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101:12375–12380

    PubMed  CAS  Google Scholar 

  • Forbush B, Kok B (1968) Reaction between primary and secondary electron acceptors of Photosystem II of photosynthesis. Biochim Biophys Acta 162:243–253

    PubMed  CAS  Google Scholar 

  • Fork DC, Satoh Ka (1983) State I-State II transitions in the thermophilic blue-green alga (cyanobacterium) Synechococcus lividus. Photochem Photobiol 37:421–427

    CAS  Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 162:239–246

    Google Scholar 

  • Franck UF, Hoffmann N, Arenz H, Schreiber U (1969) Chlorophylfluoreszenz als Indikator der photochemischen Primärprozesse der Photosynthese. Berichte Bunsengesel Physik Chemie 73:871–879

    CAS  Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507:5–31

    PubMed  CAS  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K, Ohki K (1994) Short-term and long-term adaptation of the photosynthetic aparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The molecular biology of cyanobacteria, Advances in photosynthesis vol 1. Kluwer AcademicPublishers, Dordrecht, The Netherlands, pp 677–692

    Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–207

    CAS  Google Scholar 

  • Gilmore AM, Itoh SS, Govindjee (2000) Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. Phil Trans R Soc London 355:1369–1382

    Google Scholar 

  • Gitelson AA, Buschmann C, Lichtenthaler HK (1999) The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens Environ 69:296–302

    Google Scholar 

  • Golan T, Li XP, Müller-Moulé P, Niyogi KK (2004) Using mutants to understand light stress acclimation in plants. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 525–554

    Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

  • Govindjee (2004) Chlorophyll fluorescence. A bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 1–42

  • Govindjee, Papageorgiou G (1971) Chlorophyll fluorescence and photosynthesis: fluorescence transients. In: Giese AC (ed) Photophysiology vol 6. Academic Press, New York, pp 1–46

    Google Scholar 

  • Govindjee , Satoh Ka (1986) Fluorescence properties of chlorophyll b and chlorophyll c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, New York, pp 497–537

    Google Scholar 

  • Govindjee, Seufferfeld MJ (2002) Non-photochemical quenching of chlorophyll a fluorescence: early history and characterization of two xanthophyll cycle mutants of Chlamydomonas reinhardtii. Funct Plant Biol 29:1141–1155

    CAS  Google Scholar 

  • Govindjee, Spilotro P (2002) An Arabidopsis thaliana mutant, altered in the γ-subunit of ATP synthase, has a different pattern of intensity-dependent changes in nonphotochemical quenching and kinetics of the P-to-S fluorescence decay. Funct Plant Biol 29:425–434

    CAS  Google Scholar 

  • Haldimann P, Tsimilli-Michael M (2005) Non-photochemical quenching of chlorophyll a fluorescence by oxidized plastoquinone: new evidences based on modulation of the redox state of the endogenous plastoquinone pool in broken spinach chloroplasts. Biochim Biophys Acta 1706:239–249

    PubMed  CAS  Google Scholar 

  • Haworth P, Karukstis KK, Sauer K (1983) Picosecond fluorescence kinetics in spinach chloroplasts at room temperature effects of phosphorylation. Biochim Biophys Acta 725:261–271

    CAS  Google Scholar 

  • Hirano M, Satoh K, Katoh S (1980) Plastoquinone as a common link between photosynthesis and respiration in a blue green alga. Photosyn Res 1:149–162

    CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–435

    PubMed  CAS  Google Scholar 

  • Holub O, Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg, RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microscopy 1–31

  • Holzwarth AR (1993) Is it time to throw away your apparatus for chlorophyll fluorescence induction? Biophys J 64:1280–1281

    PubMed  CAS  Google Scholar 

  • Holzwarth AR, Wendler J, Haehnel W (1985) Time-resolved picosecond fluorescence spectra of the antenna chlorophylls in Chlorella vulgaris. Resolution of Photosystem I fluorescence. Biochim Biophys Acta 807:155–167

    CAS  Google Scholar 

  • Holzwarth AR, Müller M, Reus M, Nowaczyk M, Sander J, Rögner M (2006) Kinetics and mechanism of electron transfer in intact Photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900

    PubMed  CAS  Google Scholar 

  • Hoober JK, Argyroudi-Akoyunoglou JH (2004) Assembly of light-harvesting complexes of Photosystem II and the role of chlorophyll b. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 679–712

    Google Scholar 

  • Horton P (1983a) Relations between electron transport and carbon dioxide assimilation; simultaneous measurement of chlorophyll fluorescence, transthylakoid pH gradient and O2 evolution in isolated chloroplasts. Proc R Soc London B 217:405–416

    CAS  Google Scholar 

  • Horton P (1983b) Effects of changes in the capacity for photosynthetic electron transfer and photophosphorylation on the kinetics of fluorescence induction in isolated chloroplasts. Biochim Biophys Acta 724:404–410

    CAS  Google Scholar 

  • Horton P, Hague A (1988) Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Reduction of non-photochemical quenching. Biochim Biophys Acta 932:107–115

    CAS  Google Scholar 

  • Hsu BD (1992) A theoretical study on the fluorescence induction curve of spinach thylakoids in the absence of DCMU. Biochim Biophys Acta 1140:30–36

    CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Nat Acad Sci USA 95:13319–13323

    PubMed  CAS  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Moerschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412:250–261

    PubMed  CAS  Google Scholar 

  • Ireland CR, Long SP, Baker NR (1984) The relationship between carbon dioxide fixation and chlorophyll a fluorescence during induction of photosynthesis in maize leaves at different temperatures and carbon dioxide concentrations. Planta 100:550–558

    Google Scholar 

  • Joliot P (1965a) Cinétiques des réactions liées a l’émission d’oxygène photosynthétique. Biochim Biophys Acta 102:116–134

    PubMed  CAS  Google Scholar 

  • Joliot P (1965b) Études simultanées des cinétiques de fluorescence et d’ l’émission d’oxygène photosynthétique. Biochim Biophys Acta 102:135–148

    PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (1964) Études cinétique de la réaction photochimique liberant l’oxygène au cours de la photosynthése. CR Acad Sci Paris 258:4622–4625

    CAS  Google Scholar 

  • Joliot P, Joliot A (2003) Excitation transfer between photosynthetic units; the 1964 experiment. Photosynth Res 76:241–245

    PubMed  CAS  Google Scholar 

  • Joshi MK, Mohanty P (1995) Probing photosynthetic performance by chlorophyll a fluorescence: analysis and interpretation of fluorescence parameters. J Sci Ind Res 54:155–174

    CAS  Google Scholar 

  • Joshi MK, Mohanty P (2004) Chlorophyll fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 637–661

    Google Scholar 

  • Karukstis KK, Sauer K(1983) Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. J Cellular Biochem 23:131–158

    CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue versuche zur kohlensäureassimilation. Naturwissensch 48:964

    Google Scholar 

  • Kautsky H, Appel W, Amann H (1960) Chlorophyllfluoreszenz und kohlensäureassimilation. III. Die Fluoreszenzkurve und die photochemie der pflanze. Biochem Z 332:227–292

    Google Scholar 

  • Klimov VV, Klevanik AA, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheorphytin in the primary light reaction of photosystem II. FEBS Lett 82:183–196

    PubMed  CAS  Google Scholar 

  • Klimov VV, Shuvalov VA, Heber U (1985) Photoreduction of pheophytin as a result of electron donation from the water-splitting system to Photosystem-ll reaction centers. Biochim Biophys Acta 809:345–350

    CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Kanazawa A, Cruz JA, Ivanov B, Edwards GR (2004) In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 251–278

    Google Scholar 

  • Krause GH (1974) Changes in chlorophyll fluorescence in relation to light-dependent cation transfer across thylakoid membranes. Biochim Biophys Acta 333:301–313

    CAS  PubMed  Google Scholar 

  • Krause GH, Jahns P (2004) Nonphotochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 463–495

    Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157

    CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Krause GH, Vernotte C, Briantais J-M (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae, resolution into two components. Biochim Biophys Acta 679:116–124

    CAS  Google Scholar 

  • Lavergne J, Trissl H-W (1995) Theory of fluorescence induction in Photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492

    PubMed  CAS  Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of Photosystem II and considering Photosystem II heterogeneity. J Theo Biol 220:469–503

    Google Scholar 

  • Lazar D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    CAS  Google Scholar 

  • Lichtenthaler HK (1992) The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27:45–55

    CAS  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and scenescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 713–736

    Google Scholar 

  • McAlister ED, Myers J (1940) The time course of photosynthesis and fluorescence observed simultaneously. Smithsonian Miscellaneous Collections 99:1–37

    Google Scholar 

  • Malkin S (1966) Fluorescence induction studies in isolated chloroplasts II. Kinetic analysis of the fluorescence intensity dependence on time. Biochim Biophys Acta 126:433–442

    PubMed  CAS  Google Scholar 

  • Malkin S (1971) Fluorescence induction studies in isolated chloroplasts III. On the electron-transfer equilibria in the pool of electron acceptors of Photosystem II. Biochim Biophys Acta 234:415–427

    PubMed  CAS  Google Scholar 

  • Malkin S, Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126:413–432

    PubMed  CAS  Google Scholar 

  • Malkin S, Wong D, Govindjee, Merkelo H (1980) Parallel measurements on fluorescence lifetime and intensity from leaves during fluorescence induction. Photobiochem Photobiophys 1:83–89

    CAS  Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S, Moerchel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–432

    PubMed  CAS  Google Scholar 

  • Mauzerall D (1972) Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of O2. Proc Nat Acad Sci USA 69:1358–1362

    PubMed  CAS  Google Scholar 

  • Melis A, Homann PH (1976) Kinetic analysis of the fluorescence in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437

    Google Scholar 

  • Mimuro M, Akimoto S,Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46

    PubMed  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyamad M, Tsuchiyaa, Miyashita H, Kobayashi M, Yamazakic I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 536:95–98

    Google Scholar 

  • Mohanty P, Govindjee (1973) Light-induced changes in the fluorescence yield of Chl a in Anacystis nidulans II. The fast changes and the effect of photosynthetic inhibitors on both the fast and slow fluorescence induction. Plant Cell Physiol 14:611–629

    CAS  Google Scholar 

  • Mohanty P, Govindjee (1974) The slow decline and subsequent rise of chlorophyll fluorescence transients in intact algal cells. Plant Biochem J 1:78–106

    CAS  Google Scholar 

  • Mohanty P, Papageorgiou GC, Govindjee (1971) Fluorescence induction in the red alga Porphyridium cruentum. Photochem Photobiol 14:667–682

    CAS  Google Scholar 

  • Moise N, Moya I (2004a) Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. Biochim Biophys Acta 1657:33–46

    PubMed  CAS  Google Scholar 

  • Moise N, Moya I (2004b) Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 2. Multi-frequency phase and modulation analysis evidences a loosely connected PSII pigment–protein complex. Biochim Biophys Acta 1657:47–60

    PubMed  CAS  Google Scholar 

  • Morin P (1964) Études des cinetiques de fluorescence de la chlorophylle in vivo dans les premières instants qui suivent le debut de illumination. J Chim Phys 61:674–680

    CAS  Google Scholar 

  • Munday JCM Jr, Govindjee (1969) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    PubMed  CAS  Google Scholar 

  • Murata N (1970) Control of excitation transfer in photosynthesis. IV.- Kinetics of chlorophyll a fluorescence in Porphyra yezoensis. Biochim Biophys Acta 205:379–389

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion . Plant Cell 10:1121–1134

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    PubMed  CAS  Google Scholar 

  • Paillotin G (1976) Movement of excitations in the photosynthetic domains of Photosystem II. J Theor Biol 58:337–352

    PubMed  CAS  Google Scholar 

  • Paillotin G, Geacintov NE, Breton J (1983) A master equation theory of fluorescence induction, photochemical yield, and singlet-triplet exciton quenching in photosynthetic systems. Biophys J 44:65–77

    PubMed  CAS  Google Scholar 

  • Papageorgiou GC (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 319–372

  • Papageorgiou GC, Alygizaki-Zorba A (1997) A sensitive method for the estimation of the cytoplasmic osmolality of cyanobacterial cells using chlorophyll a fluorescence. Biochim Biophys Acta 1335:1–4

    PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (1968a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo I. Anacystis nidulans. Biophys J 8:1299–1315

    PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (1968b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. Biophys J 8:1316–1328

    PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Papageorgiou GC, Stamatakis K (2004) Water and solute transport in cyanobacteria as probed by chlorophyll fluorescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 663–678

    Google Scholar 

  • Papageorgiou GC, Alygizaki-Zorba A, Ladas N, Murata N (1998) A method to probe the cytoplasmic osmolality and water and solute fluxes across the cell membrane of cyanobacteria with chlorophyll a fluorescence: experiments with Synechococcus sp. PCC 7942 Physiol Plant 103:215–224

    CAS  Google Scholar 

  • Peterson R, Sivak M, Walker DA (1988) Carbon dioxide-induced oscillations in fluorescence and photosynthesis. Role of thylakoid membrane energization in regulation of Photosystem II activity. Plant Physiol 88:1125–1130

    PubMed  CAS  Google Scholar 

  • Peterson RB, Oja V, Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 56:185–195

    Google Scholar 

  • Pfündel E (1998) Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Google Scholar 

  • Quick WP, Horton P (1984a) Studies on the induction of chlorophyll fluorescence in barley protoplasts. I. Factors affecting the observation of oscillations in the yield of chlorophyll fluorescence and the rate of oxygen evolution. Proc R Soc London B 220:361–370

    CAS  Google Scholar 

  • Quick WP, Horton P (1984b) Studies on the induction of chlorophyll fluorescence in barley protoplasts. II. Resolution of fluorescence quenching by redox state and the transthylakoid pH gradient. Proc R Soc London B 220:361–370

    CAS  Google Scholar 

  • Rajagopal S, Egorova EA, Bukhov NG, Carpentier R (2003) Quenching of excited states of chlorophyll molecules in submembrane fractions of Photosystem I by exogenous quinones. Biochim Biophys Acta 1606:147–152

    PubMed  CAS  Google Scholar 

  • Rabinowitch E (1956) Photosynthesis and related processes vol. II, Part 2. Interscience Publishers Inc., New York

    Google Scholar 

  • Reifarth F, Renger G (1998) Indirect evidence for structural changes coupled with QB-. formation in Photosystem II FEBS Lett 428:123–126

    CAS  Google Scholar 

  • Samson G, Prasil O, Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37:163–182

    CAS  Google Scholar 

  • Schansker G, Toth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of Photosystem I in the chlorophyll a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    PubMed  CAS  Google Scholar 

  • Schansker G, Toth SZ, Strasser RJ (2006) Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated Photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    PubMed  CAS  Google Scholar 

  • Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J (2001) Role of subunits in eukaryotic Photosystem I. Biochim Biophys Acta 1507:41–60

    PubMed  CAS  Google Scholar 

  • Schelvis JPM, van Noort PI, Aartsma HJ, van Gorkom HJ (1994) Energy transfer, charge separation and pigment arrangement in the reaction center of Photosystem II. Biochim Biophys Acta 1184:242–250

    CAS  Google Scholar 

  • Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox components? Trends Biochem Sci 15:458–462

    PubMed  Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S, Dau H (1997) Light-harvesting in Acaryochloris marina - spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410:433–436

    PubMed  CAS  Google Scholar 

  • Schlodder E, Cetin M, Byrdin M, Terekhova IV, Karapetyan NV (2005) P700+- and 3P700-induced quenching of fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacteriun Arthrospira platensis. Biochim Biophys Acta 1706:53–67

    PubMed  CAS  Google Scholar 

  • Schoedel R, Irrgang K-D, Voigt J, Gernot Renger G (1998) Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J 75:3143–3153

    Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 279–319

    Google Scholar 

  • Schreiber U, Vidaver W (1974) Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus. Biochim Biophys Acta, 368:97–112

    PubMed  CAS  Google Scholar 

  • Schreiber U, Vidaver W (1976) The I-D fluorescence transient an indicator of rapid energy distribution changes in photosynthesis. Biochim Biophys Acta 440:205–214

    PubMed  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    CAS  Google Scholar 

  • Shinkarev V (2004) Photosystem II: oxygen evolution and chlorophyll a fluorescence induced by multiple flashes. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 197–229

    Google Scholar 

  • Shinkarev V, Govindjee (1993) Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis. Proc Natl Acad Sci USA 90:7466–7469

    PubMed  CAS  Google Scholar 

  • Sivak MN, Walker DA (1987) Oscillations and other symptoms of limitation of in vivo photosynthesis by inadequate phosphate supply to the chloroplast. Plant Physiol Biochem 25:635–648

    CAS  Google Scholar 

  • Sivak MN, Prinsley RT, Walker DA (1983) Some effects of changes in gas phase on the steady state chlorophyll a fluorescence exhibited by illuminated leaves. Proc R Soc Lond B 217:393–404

    Article  CAS  Google Scholar 

  • Sivak MN, Heber U, Walker DA (1985a) Chlorophyll a fluorescence and light-scattering kinetics displayed by leaves during induction of photosynthesis. Planta 163:419–423

    CAS  Google Scholar 

  • Sivak MN, Dietz K.-J, Heber U, Walker DA (1985b) The relationship between light-scattering and chlorophyll a fluorescence during oscillations in photosynthetic carbon assimilation. Arch Biochem Biophys 237:513–519

    PubMed  CAS  Google Scholar 

  • Sonneveld A, Rademaker H, Duysens LNM (1979) Chlorophyll fluorescence as a monitor of nanosecond reduction of the photo-oxidation of the primary donor P-680+ of Photostem II. Biochim Biophys Acta 548:536–551

    PubMed  CAS  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1995) Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutant of Chlamydomonas reinhardtii. Photosynth Res 43:131–141

    CAS  Google Scholar 

  • Stamatakis K, Papageorgiou GC (2001) The osmolality of the cell suspension regulates phycobilisome-to-Photosystem I excitation transfers in cyanobacteria. Biochim Biophys Acta 1506:172–181

    PubMed  CAS  Google Scholar 

  • Stamatakis K, Tsimilli-Michael M, Papageorgiou GC (2007) Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942 Analysis of the slow fluorescence transient. Biochim Biophys Acta 1767:766–772

    PubMed  CAS  Google Scholar 

  • Steffen R, Eckert HJ, Kelly AA, Dörmann P, Renger G (2005) Investigations on the reaction pattern of Photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44:3123–3133

    PubMed  CAS  Google Scholar 

  • Strasser RJ, Stirbet AD (2001) Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O-J-I-P. Fitting of experimental data to three different PS II models. Math Comput Simulat 56:451–461

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescent transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, UK, pp 443–480

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 321–362

    Google Scholar 

  • Stirbet AD, Govindjee, Strasser BJ, Strasser RJ (1998) Chlorophyll fluorescence induction in higher plants: modeling and numerical simulation. J Theor Biol 193:131–151

    CAS  Google Scholar 

  • Thomas JB, Voskuil W, Olsman H, De Boois HM (1962) Fluorescence-induction phenomena in isolated chloroplasts. Biochim Biophys Acta 59:224–226

    PubMed  CAS  Google Scholar 

  • Toth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochim Biophys Acta 1708:275–282

    PubMed  CAS  Google Scholar 

  • Trissl HW (1994) Response to Falkowski et al. Biophys J 66:925–926

    Google Scholar 

  • Trissl HW, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of Photosystem II by an exciton/radical pair equilibrium. Biophys J 64:984–998

    Google Scholar 

  • Vernotte C, Etienne AL, Briantais J-M (1979) Quenching of the Photosystem II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545:519–527

    PubMed  CAS  Google Scholar 

  • Vredenberg WJ (1970) Chlorophyll a fluorescence induction and changes in the electrical potential of the cellular membranes of green plant cells. Biochim Biophys Acta 223:230–239

    PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2000) A three-state model for energy trapping and chlorophyll fluorescence in Photosystem II incorporating radical pair recombination. Biophys J 79:25–38

    Google Scholar 

  • Vredenberg WJ (2004) System analysis and photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of photosystem II: a challenging view. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 133–172

    Google Scholar 

  • Vredenberg W, Durchan M, Prasil O (2007) On the chlorophyll a fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains. Photosynth Res. doi:10.1007/s11120-007-9150-08

  • Vredenberg WJ, Kasalicky V, Durchan M, Prasil O (2006) The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of QB-nonreducing centers. Biochim Biophys Acta 1757:173–181

    PubMed  CAS  Google Scholar 

  • Walker DA (1981) Secondary fluorescence kinetics of spinach leaves in relation to the onset of photosynthetic carbon assimilation. Planta 143:273–278

    Google Scholar 

  • Walker DA, Sivak MN (1986) Photosynthesis and phosphate: a cellular affair. Trends Biochem Sci 11:176–179

    CAS  Google Scholar 

  • Walker DA, Sivak MN, Prinsley R, Cheesbrough JK (1983a) Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces. Plant Physiol 73:542–549

    Article  PubMed  CAS  Google Scholar 

  • Walker DA, Horton P, Sivak MN, Quick WP (1983b) Antiparallel relationships between O2 evolution and slow fluorescence induction kinetics. Photobiochem Photobiophys 5:35–39

    CAS  Google Scholar 

  • Warburg O (1920) Über die Geschwindigkeit der photochemischen kohlensäurezersetzung in lebenden zellen. Biochem Z 103:188–217

    CAS  Google Scholar 

  • Williams WP, Allen JF (1987) State 1/state 2 changes in higher plants and algae. Photosynth Res 13:19–45

    CAS  Google Scholar 

  • Williams WP, Salamon Z (1976) Enhancement studies of algae and isolated chloroplasts. Part I. Variabiliy of photosynthetic enhancement in Chlorella pyrenoidosa. Biochim. Biophys Acta 430:282–289

    PubMed  CAS  Google Scholar 

  • Wraight C, Crofts AR (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur J Biochem 17:319–327

    PubMed  CAS  Google Scholar 

  • Zhu XG, Govindjee, Baker NR, de Sturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Shigeru Itoh, Nagoya University, Japan, for a generous gift of Acaryochloris marina culture; also, Emeritus Prof. Govindjee, University of Illinois, USA, and Hon. Prof. Prasanna Mohanty, Regional Plant Resource Center, Bhubaneswar. India for reading the manuscript and providing critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papageorgiou, G.C., Tsimilli-Michael, M. & Stamatakis, K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94, 275–290 (2007). https://doi.org/10.1007/s11120-007-9193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9193-x

Keywords

Navigation