Skip to main content
Log in

Natural diterpenes from Croton ciliatoglanduliferus as photosystem II and photosystem I inhibitors in spinach chloroplasts

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In our search for new natural photosynthetic inhibitors that could lead to the development of “green herbicides” less toxic to environment, the diterpene labdane-8α,15-diol (1) and its acetyl derivative (2) were isolated for the first time from Croton ciliatoglanduliferus Ort. They inhibited photophosphorylation, electron transport (basal, phosphorylating and uncoupled) and the partial reactions of both photosystems in spinach thylakoids. Compound 1 inhibits the photosystem II (PS II) partial reaction from water to Na+ Silicomolibdate (SiMo) and has no effect on partial reaction from diphenylcarbazide (DPC) to 2,6-dichlorophenol indophenol (DCPIP), therefore 1 inhibits at the water splitting enzyme and also inhibits PS I partial reaction from reduced phenylmetasulfate (PMS) to methylviologen (MV). Thus, it also inhibits in the span of P700 to Iron sulfur center X (FX). Compound 2 inhibits both, the PS II partial reactions from water to SiMo and from DPC to DCPIP; besides this, it inhibits the photosystem I (PS I) partial reaction from reduced PMS to MV. With these results, we concluded that the targets of the natural product 2 are located at the water splitting enzyme, and at P680 in PS II and at the span of P700 to FX in PS I. The results of compounds 1 and 2 on PS II were corroborated by chlorophyll a fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

Chl:

Chlorophyll

DBMIB:

2,5-Dibromo-6-isopropyl-3-methyl-1,4-benzoquinone

DCPIP:

2,6-Dichlorophenol indophenol

DPC:

Diphenylcarbazide

D1 :

Subunit D1 of PS II

EPR:

Electron paramagnetic resonance

F 0 :

Fluorescence level when plastoquinone electron acceptor pool (Q a) is fully oxidized

F 300 :

Fluorescence intensity at 300 μs

F J :

Fluorescence intensity at the J-step (at 2 ms)

F m :

Fluorescence level when Q a is transiently fully reduced

F v :

Variable fluorescence (F mF 0)

Fv/Fm:

Maximum quantum efficiency of photosystem II

F x :

Iron sulfur center

M 0 :

4(F 300F 0)/(F mF 0)

MV:

Methylviologen

OEC:

Oxygen evolving complex

PEA:

Plant efficiency analyzer

PMS:

Phenylmetasulfate

PS I:

Photosystem I

PS II:

Photosystem II

QA (QB):

Primary (secondary) quinone electron acceptor of PS II

P700 :

PS I reaction center

SiMo:

Sodium silicomolybdate

VCC:

Via column chromatography

References

  • Allen JF, Holmes NG (1986) Electron transport partial reactions. In: Hipkinns MF, Baker NR (eds) Photosynthesis, energy transduction. A practical approach, Chap. 5. IRL Press, Oxford United Kingdom, pp 103–141

    Google Scholar 

  • Armstrong JMcD (1964) The molar extinction coefficient of 2,6-dichlorophenol indophenol. Biochim Biophys Acta 86:194–197

    PubMed  CAS  Google Scholar 

  • Carman RM (1973) The optical rotation of tertiary alcohols. Aust J Chem 26:879–881

    Article  CAS  Google Scholar 

  • Castañeda P, Mata R, Lotina B (1998) Effect of encecalin, euparin and demethylencecalin on thylakoid electron transport and photophosphorylation in isolated spinach chloroplasts. J Sci Food Agric 78:102–108

    Article  Google Scholar 

  • Chávez D, Mata R, Iglesias-Prieto R et al (2001) Annonaceous acetogenins: naturally occurring inhibitors of ATP synthesis and photosystem II in spinach chloroplasts. Physiol Plant 111:262–268

    Article  Google Scholar 

  • Chinou I (2005) Labdanes of natural origin-biological activities (1981–2004). Curr Med Chem 12:1295–1317

    Article  PubMed  CAS  Google Scholar 

  • Dilley RA (1972) Ion transport (H+, K+, Mg2+ exchange phenomena). Methods Enzymol 24:68–74

    PubMed  CAS  Google Scholar 

  • Duke SO, Brian E, Scheffler, Dayan FE (2002) Allelochemicals as herbicides. In: Reigosa M, Pedrol N (eds) Allelopathy from molecules to ecosystems. Science publishing, Inc. NH, USA, pp 183–195

    Google Scholar 

  • Giaquinta RT, Dilley RA (1975) A partial reaction in photosystem II: reduction of silicomolybdate prior to the site of dichlorophenyldimethyl-urea inhibition. Biochim Biophys Acta 387:288–305

    Article  PubMed  CAS  Google Scholar 

  • Giaquinta RT, Selman BR, Anderson BJ et al (1974) Inhibition of coupling factor activity of chloroplasts membrane by diazonium compounds. J Biol Chem 249:2873–2878

    PubMed  CAS  Google Scholar 

  • González AG, Francisco CG, Freire R et al (1976) C12 stereochemistry of α-and β-levantenolide. Carbon-13 NMR spectra of labdanolic diterpenes. Tetrahedron Lett 22:1897–1898

    Article  Google Scholar 

  • González-Bernardo E, Aguilar MI, Delgado G et al (2003) Photosynthetic electron transport interaction of xanthorrhizol isolated from Iostephane heterophylla and its derivatives. Physiol Plant 119:598–604

    Article  Google Scholar 

  • González-Vázquez R, King Díaz B, Aguilar MI et al (2006) Pachypodol from Croton ciliatoglanduliferus Ort. as water-splitting enzyme inhibitor on thylakoids. J Agric Food Chem 54:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Good NE, Izawa S, Hind G (1981) Uncoupling and energy transfer inhibition in Photophosphorylation. In: Sanadi DR (ed) Current topics in bioenergetics, vol 1 Academic Press, New York, pp 75–112

    Google Scholar 

  • Henrick CA, Jefferies PR (1965) The chemistry of the Euphorbiaceae-XI. The diterpenes of Ricinocarpus muricatus and the stereochemistry of euperuic acid. Tetrahedron 21:1175–1190

    Article  CAS  Google Scholar 

  • Hirota H, Nakamora T, Tsuyuki T et al (1988) Stereoselective total synthesis of (±)-labdane-8α,15-diol and (±)-eperuane-8β,15-diol. Bull Chem Soc Jpn 61:4023–4028

    Article  CAS  Google Scholar 

  • Huerta A, Lopez-Olguin JF, Aragon A et al (2002) Effect of a powder and watery extract of Croton ciliatoglanduliferus Ort. (Euphorbiaceae) incorporated into the diet of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Bol Sanid Vegetal Plagas 28:405–414

    Google Scholar 

  • Izawa S, Krayenhof R, Ruuge EK, DeVault D (1973) The site of KCN inhibition in the photosynthetic electron transport pathway. Biochem Biophys Acta 314:328–339

    Article  PubMed  CAS  Google Scholar 

  • Izawa S, Hind G (1967) The kinetics of the pH rise in illuminated chloroplast suspensions. Biochem Biophys Acta 143:377–390

    Article  PubMed  CAS  Google Scholar 

  • King-Díaz B, Piló-Veloso D, Lotina-Hennsen B et al (2006) A diterpene γ-lactone derivate from Pterodon polygalaeflorus as a photosystem II inhibitor and uncoupler of photosynthesis. Z Naturforsch C, J Biosci 61c: 227–233

    Google Scholar 

  • Lotina-Hennsen B, King-Díaz B, Aguilar MI, et al (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: A Physiological Process with Ecological Implications. Kluwer Academic Publishers. Netherlands, pp 229–265

  • Mills JD, Mitchell P, Shurmann P (1980) Modulation of coupling ATPase activity in intact chloroplasts. FEBS Lett 112:73–177

    Article  Google Scholar 

  • Mitchel P (1961) Coupling of photophosphorylation to electron and hydrogen transfer by a Chemiosmotic type mechanism. Nature 191:144–148

    Article  Google Scholar 

  • Ouitrakul R, Izawa S (1973) Electron transport and photophosphorylation in chloroplast a function of electron-acceptor 2. Acceptor-specific inhibition by KCN. Biochim Biophys Acta 305:105–118

    Article  PubMed  CAS  Google Scholar 

  • Perry NB, Weavers RT (1985) Foliage diterpenes of Dacrydium Intermedium: identification, variation and biosynthesis. Phytochemistry 24: 2899–2904

    Article  CAS  Google Scholar 

  • Rickert KW, Sears J, Beck WF et al (1991) Mechanism of irreversible inhibition of O2 evolution in photosystem II by Tris (hydroxymethyl)aminomethane. Biochemistry 30:7888–7894

    Article  PubMed  CAS  Google Scholar 

  • Rios MY, Aguilar-Guadarrama AB (2006) Nitrogen-containing phorbol esters from Croton ciliatoglandulifer and their effects on cyclooxygenases-1 and -2. J Nat Prod 69:887–890

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Ouitrakul R, Izawa S et al (1971) Electron transport and phosphorylation in chloroplasts as a function of the electron acceptor. J Biol Chem 246:3204–3209

    PubMed  CAS  Google Scholar 

  • Schwartz M (1968) Light induced proton gradient links electron transport and phosphorylation. Nature 219:915–919

    Article  PubMed  CAS  Google Scholar 

  • Strain HH, Cope T, Svec MA (1971) Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol 23:452–466

    CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cianobacteria. Photochem Photobiol 66:32–45

  • Strasser BJ (1997) Donor side capacity of photosystem probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (1998) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Mohany P, Yunus M, Pathre U (eds) Probing photosynthesis: mechanism, regulation & adaptation. Taylor & Francis, London, pp 42–46

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Advances in photosynthesis and respiration. chlorophyll fluorescence a signature of photosynthesis, vol 19. Kluwer Academic Publishers, The Netherlands, pp 321–362

  • Trebst A (1972) Measurement of Hill Reactions and photoreduction. Methods Enzymol 24:146–153

    PubMed  CAS  Google Scholar 

  • Trebst A (1980) Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. Methods Enzymol 69:675–715

    Article  CAS  Google Scholar 

  • Vernon LP, Shaw ER (1969) Photoreduction of 2,6-dichlorophenol by diphenylcarbazide: a photosystem 2 reaction catalyzed by Tris-washed chloroplasts and subchloroplasts fragments. Plant Physiol 44:1645–1649

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T Horio T (1968) Non-cyclic photophosphorylation by spinach grana treated with 0.8 M tris buffer. Plant Cell Physiol 9:268–284

    Google Scholar 

  • Zhou YH, Yu JQ (2006) Allelochemicals and photosynthesis. In: Reigosa JM, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Netherlands, pp 127–139

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the DGAPA-UNAM IN205806 research project. This research was taken in part from the B.Sc. thesis of F. M. F. We also thank to Professor Nelly Diego for the collection and identification of the plant material used in this work and to M en C Yolanda González, M en C Rosa Isela del Villar, M en C Víctor Manuel Arroyo, M en C Georgina Duarte, QFB Marisela Gutiérrez (Facultad de Química, UNAM) for recording the NMR, MS and IR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blas Lotina-Hennsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Flores, F., Aguilar, M.I., King-Díaz, B. et al. Natural diterpenes from Croton ciliatoglanduliferus as photosystem II and photosystem I inhibitors in spinach chloroplasts. Photosynth Res 91, 71–80 (2007). https://doi.org/10.1007/s11120-007-9143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9143-7

Keywords

Navigation