Skip to main content
Log in

From Chlorella to chloroplasts: a personal note

  • Original Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

An historical and personal reflection on the function of the Benson–Calvin Cycle in isolated chloroplasts, the role of inorganic phosphate and the manner in which this might be best presented to students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldry CW, Bucke C, Walker DA (1966) Incorporation of inorganic phosphate into sugar phosphates during carbon dioxide fixation by illuminated chloroplasts. Nature 210:793–796

    Article  CAS  Google Scholar 

  • Bandurski RS, Greiner CM (1953) The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J Biol Chem 204:781–786

    PubMed  CAS  Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M (1954) The Path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76:1760–1770

    Article  CAS  Google Scholar 

  • Benson AA, Bassham JA, Calvin M, Goodale TC, Haas VA, Stepka W (1950) The path of carbon in photosynthesis. V. paper chromatography and radioautography of the products. J Am Chem Soc 72:1710–1718

    Article  CAS  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Ann Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288:1–9

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot JP (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosyn Res 73:215–222

    Article  PubMed  CAS  Google Scholar 

  • Calvin M, Benson AA (1948) The Path of Carbon in Photosynthesis. Science 107:476–480

    Article  CAS  PubMed  Google Scholar 

  • Cockburn W, Baldry CW, Walker DA (1967a) Oxygen evolution by isolated chloroplasts with carbon dioxide as the hydrogen acceptor. A requirement for orthophosphate or pyrophosphate. Biochim Biophys Acta 131:594–596

    Article  CAS  Google Scholar 

  • Cockburn W, Baldry CW, Walker DA (1967b) some effects of inorganic phosphate on O2 evolution by isolated chloroplasts. Biochim Biophys Acta 143:614–624

    Article  CAS  Google Scholar 

  • Cockburn W, Walker DA, Baldry CW (1968) Photosynthesis by isolated chloroplasts. Reversal of orthophosphate inhibition by Calvin-cycle intermediates. Biochem J 107:89–95

    PubMed  CAS  Google Scholar 

  • Chapman RE (1924) The Carbohydrate Enzymes of some starch-free monocotyledons. Biochem J 18:1388–1400

    PubMed  CAS  Google Scholar 

  • Edwards GE, Walker DA (1983) C3, C4, mechanisms, and cellular and environmental regulation of photosynthesis. Blackwell Scientific Publications Ltd, Oxford, pp 1–542

    Google Scholar 

  • Flügge MU, Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Ann Rev Plant Physiol Plant Molecular Biol 42:129–144

    Article  Google Scholar 

  • Foyer CH, Harbron S, Walker DA (1981) Regulation of sucrose phosphate synthetase and sucrose biosynthesis in spinach leaves. In: Akoyunoglou G (ed) (Proceed of the 5th Int Congr on Photosynthesis, Kassandra-Halkidiki), Photosynthesis Vol IV. Balaban International Science Services, Philadelphia, pp 357–364

    Google Scholar 

  • Foyer CH, Walker DA, Latzko E (1982) The regulation of cytoplasmic fructose 1,6-bisphosphatase in relation to the control of carbon flow to sucrose in leaves. Zeitschrift Pflanzenphysiol 107:457–466

    CAS  Google Scholar 

  • Fuller RC (1999) Forty years of microbial photosynthesis research: Where it came from and what it led to. Photosynth Res 62:1–29

    Article  CAS  Google Scholar 

  • Heldt HW, Rapley L (1970) Specific transport of inorganic phosphate, 3-phosphoglycerate dihydroxyacetonephosphate and of dicarboxylates across the inner envelope of spinach chloroplasts. FEBS Lett 10:143–148

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, Bassham JA (1966) Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 56:1095–1101

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, Bassham JA (1968) Photosynthesis by isolated chloroplasts III. Light activation of the carboxylation reaction. Biochim Biophys Acta 153:227–234

    Article  PubMed  CAS  Google Scholar 

  • Kelly GJ, Latzko E (2006) Thirty Years of photosynthesis. Springer, Berlin, pp 1–414

    Google Scholar 

  • Leegood RC, Walker DA (1980) Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch Biochem Biophys 200:575–582

    Article  PubMed  CAS  Google Scholar 

  • Ochoa S, Veiga Salles JB, Ortiz PJ (1950) Biosynthesis of dicarboxylic acids by carbon dioxide fixation. iii. Enzymatic synthesis of malic acid by reductive carboxylation of pyruvic acid. J Biol Chem 187:863–874

    PubMed  CAS  Google Scholar 

  • Osmond CM (1978) Crassulacean acid metabolism: A curiosity in context. Ann Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Robinson SP, Walker DA (1979) The site of sucrose synthesis in isolated leaf protoplasts. FEBS Lett 107:295–299

    Article  PubMed  CAS  Google Scholar 

  • Sachs J (1862) Ueber den Einfluss des Lichtes auf die Bildung des Amylums in den Chlorophyllkörnern. Bot Zeitung 20:365–373

    Google Scholar 

  • Stitt M, Heldt HW (1985) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate VI. Regulation of the cytosolic fructose 1,6-bisphosphatase in spinach leaves by an interaction between metabolic intermediates and fructose 2,6-bisphosphate. Plant Physiol 79:599–608

    PubMed  CAS  Google Scholar 

  • Stokes DM, Walker DA, McCormick AV (1972) Photosynthetic oxygen evolution in a reconstituted chloroplast system. In: Forti G, Avron M, Melandri A (eds) Progress in photosynthesis (Proceed II Internat Congr on Photosynthesis, Stresa 1971). W Junk, NV Publisher, The Hague, pp 1779–1785

    Google Scholar 

  • Thomas M (1947) Plant physiology. Churchill, London, pp 1–504

    Google Scholar 

  • Walker DA (1956) Malate synthesis in a cell-free extract from a Crassulacean plant. Nature 178:593–594

    Article  CAS  Google Scholar 

  • Walker DA (1957) Physiological studies on acid metabolism. 4. Phosphoenolpyruvic carboxylase activity in extracts of Crassulacean plants. Biochem J 67:73–79

    PubMed  CAS  Google Scholar 

  • Walker DA (1965) Correlation between photosynthetic activity and membrane integrity in isolated pea chloroplasts. Plant Physiol 40:1157–1161

    PubMed  CAS  Google Scholar 

  • Walker DA, Cockburn W, Baldry CW (1967) Photosynthetic oxygen evolution by isolated chloroplasts in the presence of carbon cycle intermediates. Nature 216:597–599

    Article  CAS  Google Scholar 

  • Walker DA, Hill R (1967) The relation of oxygen evolution to carbon assimilation with isolated chloroplasts. Biochim Biophys Acta 131:330–333

    Article  PubMed  CAS  Google Scholar 

  • Walker DA, Baldry CW, Cockburn W (1968) Photosynthesis by isolated chloroplasts, simultaneous measurement of carbon assimilation and oxygen evolution. Plant Physiol 43:1419–1422

    Article  PubMed  CAS  Google Scholar 

  • Walker DA, Crofts AR (1970) Photosynthesis. Ann Rev Biochem 39:389–428

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (1972) The affinity of ribulose diphosphate carboxylasefor CO2/bicarbonate. In: Forti G, Avron M, Melandri A (eds) Progress in photosynthesis (Proceed internat congr on photosynthesis, Stresa 1971). W Junk, NV Publisher, The Hague, pp 1774–1778

    Google Scholar 

  • Walker DA, Leegood RC, Sivak MN (1986) Ribulose bisphosphate carboxylase-oxygenase: its role in photosynthesis. Phil Trans Roy Soc B 313:305–324

    Article  CAS  Google Scholar 

  • Walker DA, Lilley RMcC (1976) Ribulose bisphosphate carboxylase—an enigma resolved. In: Sunderland N (ed) Photosynthesis and physiology of the whole plant (Proceedings 50th Anniversary Meeting, S.E.B. Cambridge). Pergamon Press, Oxford, pp 189–198

  • Walker DA (1992) Energy, Plants and Man, 2nd edn, (ISBN1870232 05 4). Oxygraphics, Brighton, 277pp

  • Walker DA (2000) Like clockwork, (ISBN 1 870 232 12 7). Oxygraphics, Sheffield, 129pp

  • Walker DA (2003) Chloroplasts in envelopes: CO2 fixation by fully functional intact chloroplasts. Photosynth Res 76:319–327

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (1973) Photosynthetic induction phenomena and the light activation of ribulose diphosphate carboxylase. New Phytol 72:209–235

    Article  CAS  Google Scholar 

  • Zeeman Samuel C, Smith Steven M, Smith Alison M (2004) The breakdown of starch in leaves. New Phytologist 163:247–261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alan Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D.A. From Chlorella to chloroplasts: a personal note . Photosynth Res 92, 181–185 (2007). https://doi.org/10.1007/s11120-007-9139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9139-3

Keywords

Navigation