Photosynthesis Research

, Volume 93, Issue 1–3, pp 27–43 | Cite as

The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421

  • David W. Krogmann
  • Bertha Pérez-Gómez
  • Emma Berta Gutiérrez-Cirlos
  • Alicia Chagolla-López
  • Luis González de la Vara
  • Carlos Gómez-Lojero
Original paper

Abstract

The complete genome sequence of Gloeobacter violaceus [Nakamura et al. (2003a, b) DNA Res 10:37–45, 181–201] allows us to understand better the structure of the phycobilisomes (PBS) of this cyanobacterium. Genomic analysis revealed peculiarities in these PBS: the presence of genes for two multidomain linker proteins, a core membrane linker with four repetitive sequences (REP domains), the absence of rod core linkers, two sets of phycocyanin (PC) α and β subunits, two copies of a rod PC associated linker (CpcC), and two rod cap associated linkers (CpcD). Also, there is one ferredoxin–NADP+ oxidoreductase with only two domains. The PBS proteins were investigated by gel electrophoresis, amino acid sequencing and peptide mass fingerprinting (PMF). The two unique multidomain linkers contain three REP domains with high similarity and these were found to be in tandem and were separated by dissimilar Arms. One of these, with a mass of 81 kDa, is found in heavy PBS fragments rich in PC. We propose that it links six PC hexamers in two parallel rows in the rods. The other unique linker has a mass of 91 kDa and is easily released from the heavy fragments of PBS. We propose that this links the rods to the core. The presence of these multidomain linkers could explain the bundle shaped rods of the PBS. The presence of 4 REP domains in the core membrane linker protein (129 kDa) was established by PMF. This core linker may hold together 16 AP trimers of the pentacylindrical core, or alternatively, a tetracylindrical core of the PBS of G. violaceus.

Keywords

Cyanobacterium Gloeobacter violaceus Phycobilisome Multidomain linkers 

Abbreviations

AP

Allophycocyanin

apcAB

Gene encoding the α and β subunits of allophycocyanin

apcC

Gene encoding the 8–kDa core linker polypeptide

ApcE

The 129-kDa core membrane linker phycobiliprotein

A.U.

Absorbance units

cpcBA

Genes encoding the α and β subunits of phycocyanin

cpcC1

Gene encoding the PC-rod linker polypeptide

cpcD

Gene encoding the 9-kDa rod linker polypeptide

cpcG

Gene encoding the rod-core linker polypeptide

DCPIP

Dichlorophenol-indophenol

DMF

Dimethyl-formamide

EDTA

Ethylenediamine tetraacetic acid

FNR

Ferredoxin-NADP+ oxidoreductase

FNR-2D

FNR containing only the two catalytic domains

FNR-3D

FNR containing three domains (the CpcD-like domain and two catalytic domains)

F.U.

Fluorescence units

LC8

Core linker polypeptide of 8 kDa

LCM129

LR9, the 9-kDa, phycocyanin-associated rod linker polypeptide

LR33

CpcC, the PC-rod linker polypeptide

CpcG

The rod core linker polypeptide

PAGE

Polyacrylamide gel electrophoresis

PBP(s)

Phycobiliprotein(s)

PBS

Phycobilisome(s)

PC

Phycocyanin

PE

Phycoerythrin

petH

Gene encoding FNR

PMF

Protein mass fingerprinting

PMSF

Phenyl-methylsulfonyl fluoride

REP

Repetitive sequence

SDS

Sodium dodecylsulfate

WCE

Whole-cell extract

References

  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Phosynth Res 85:15–32CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped Blast and PSI Blast: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Anderson L, Eiserling FA (1986) Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6701. J Mol Biol 191:441–451CrossRefPubMedGoogle Scholar
  4. Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue green alga. J Cell Biol 58:419–435CrossRefPubMedGoogle Scholar
  5. Bryant DA (1981) The photoregulated expression of multiple phycocyanin species. Eur J Biochem 119:425–429CrossRefPubMedGoogle Scholar
  6. Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127CrossRefGoogle Scholar
  7. Bryant DA, Cohen-Bazire G, Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129:190–198CrossRefGoogle Scholar
  8. Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W, Zuber H (1991) A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC 7120 phycobilisomes. Gene 107:91–99CrossRefPubMedGoogle Scholar
  9. Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The anchor polypeptide of cyanobacterial phycobilisomes. J Biol Chem 266:7239–7247PubMedGoogle Scholar
  10. Cobley JG, Clark AC, Weerasurya S, Queseda FA, Xiao JY, Bandrapali N, D′Silva I, Thounaojam M, Oda JF, Sumiyoshi T, Chu MH (2002) CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol Microbiol 44:1517–1531CrossRefPubMedGoogle Scholar
  11. Delepelaire P, Chua NH (1979) Lithium dodecyl sulfate, polyacrilamide gel electrophoresis of thylakoid membranes at 4°C; characterizations of two additional chlorophyll a protein complexes. Proc Natl Acad Sci USA 76:111–115CrossRefPubMedGoogle Scholar
  12. de Lorimier R, Bryant DA, Stevens SE (1990) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta 1019:29–41CrossRefPubMedGoogle Scholar
  13. Ducret A, Müller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterization and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369–388CrossRefPubMedGoogle Scholar
  14. Everroad C, Six C, Partensky F, Tomas JC, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J Bacteriol 188:3345–3356CrossRefPubMedGoogle Scholar
  15. Füglistaller P, Mimuro M, Suter F, Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide Lc 8.9 on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe Seyler 368:353–367PubMedGoogle Scholar
  16. Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907–915CrossRefPubMedGoogle Scholar
  17. Glazer AN (1989) Light Guides. J Biol Chem 264:1–4PubMedGoogle Scholar
  18. Gómez-Lojero C, Pérez-Gómez B, Prado-Flores G, Krogmann DW, Cárabez-Trejo A, Peña-Díaz A (1997) The phycobilisomes of the cyanobacterium Arthrospira (Spirulina) maxima. Int J Biochem Cell Biol 2910:1191–1205CrossRefGoogle Scholar
  19. Gómez-Lojero C, Pérez-Gómez B, Shen G, Schluchter WM, Bryant DA (2003) Interaction of ferredoxin: NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42:13800–13811CrossRefPubMedGoogle Scholar
  20. Gottschalk L, Fischer R, Lottspeich F, Scheer H (1991) Origin of the red shifted absorption in phycocyanin 632 from Mastigocladus laminosus. Photochem Photobiol 54:283–288Google Scholar
  21. Gottschalk L, Lottspeich F, Scheer H (1993) Reconstitution of allophycocyanin from Mastigocladus laminosus with isolated linker polypeptide. Photochem Photobiol 58:761–767Google Scholar
  22. Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76:207–215CrossRefPubMedGoogle Scholar
  23. Grossman AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449–11452CrossRefPubMedGoogle Scholar
  24. Guglielmi G, Cohen-Bazire G, Bryan DA (1981) The Structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189CrossRefGoogle Scholar
  25. Gutiérrez-Cirlos EB, Pérez-Gómez B, Krogmann DW, Gómez-Lojero C (2006) The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim Biophys Acta 1757:130–134CrossRefPubMedGoogle Scholar
  26. Isono T, Katoh T (1987) Subparticles of Anabaena phycobilisomes II. Molecular assembly of allophycocyanin cores in reference to “anchor” protein. Arch Biochem Biophys 256:317–324CrossRefPubMedGoogle Scholar
  27. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136CrossRefPubMedGoogle Scholar
  28. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213CrossRefPubMedGoogle Scholar
  29. Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142CrossRefPubMedGoogle Scholar
  30. Lundell DJ, Glazer AN (1983) Molecular architecture of a light-harvesting antenna. Core substructure in Synechococcus 6301 phycobilisomes two new allophycocyanin and allophycocyanin B complexes. J Biol Chem 258:902–908PubMedGoogle Scholar
  31. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334CrossRefPubMedGoogle Scholar
  32. Martin RG, Ames BN (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236:1372–1378PubMedGoogle Scholar
  33. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa Ch, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi Ch, Yamada M, Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130CrossRefPubMedGoogle Scholar
  34. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa Ch, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi Ch, Yamada M, Tabata S (2003a) Complete genome structure of Gloeobacter violaceus PCC7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145CrossRefGoogle Scholar
  35. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa Ch, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi Ch, Yamada M, Tabata S (2003b) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylacoids (Supplement). DNA Res 10:181–201CrossRefGoogle Scholar
  36. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042CrossRefPubMedGoogle Scholar
  37. Raps S (1990) Differentiation between phycobiliprotein and colorless linker polypeptides by fluorescence in the presence of ZnSO4. Plant Physiol 92:358–362PubMedCrossRefGoogle Scholar
  38. Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.Lc 7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363–1368CrossRefPubMedGoogle Scholar
  39. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436CrossRefGoogle Scholar
  40. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  41. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMedGoogle Scholar
  42. Schluchter WM, Bryant DA (1992) Molecular characterization of ferredoxin-NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Synechococcus sp. PCC 7002 and studies on the gene product. Biochemistry 31:3092–3102CrossRefPubMedGoogle Scholar
  43. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 139–216Google Scholar
  44. Six C, Thomas JC, Thion L, Lemoine Y, Zal F, Partensky F (2005) Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102. J Bacteriol 187:1685–1694CrossRefPubMedGoogle Scholar
  45. Tandeau de Marsac N (1977) Ocurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91Google Scholar
  46. Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76:197–205CrossRefGoogle Scholar
  47. Tandeau de Marsac N, Mazel D, Damerval T, Guglielmi G, Capuano V, Houmard J (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601 light-harvesting complexes and cell differentiation. Photosynth Res 18:99–132CrossRefGoogle Scholar
  48. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  49. van Thor JJ, Gruters OWM, Matthijs HCP, Hellingwerf KJ (1999) Localization and function of ferredoxin: NADP+ reductase bound to the phycobilisomes of Synechocystis. EMBO J 18:4128–4136CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • David W. Krogmann
    • 1
  • Bertha Pérez-Gómez
    • 2
  • Emma Berta Gutiérrez-Cirlos
    • 3
  • Alicia Chagolla-López
    • 4
  • Luis González de la Vara
    • 4
  • Carlos Gómez-Lojero
    • 2
  1. 1.Department of BiochemistryPurdue UniversityWest LafayetteUSA
  2. 2.Departmento de BioquímicaCentro de Investigación y Estudios Avanzados-IPNMexicoMexico
  3. 3.Unidad de Biomedicina FES-Iztacala UNAMTlalnepantla, Edo de MéxicoMéxico
  4. 4.Cinvestav-Unidad IrapuatoGuanajuatoMexico

Personalised recommendations