Skip to main content

Advertisement

Log in

Ascorbate peroxidase–thioredoxin interaction

  • REGULAR PAPER
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Proteomics data have suggested ascorbate peroxidase (APX) to be a potential thioredoxin-interacting protein. Using recombinant enzymes, we observed that incubation of pea cytosolic APX with reduced poplar thioredoxins h drastically inactivated the peroxidase. A similar inactivation is induced by reduced glutathione and dithiothreitol, whereas diamide and oxidized glutathione have no effect. Oxygen consumption measurements, modifications of the APX visible spectrum and protection by hydrogen peroxide scavenging enzymes suggest that APX oxidizes thiols leading to the generation of thiyl radicals. These radicals can in turn react with thiyl anions to produce the disulfide radical anions, which are responsible for oxygen reduction and subsequent hydrogen peroxide production. The APX inactivation is not due solely to hydrogen peroxide since fluorimetry indicates that the environment of the APX tryptophan residues is dramatically modified only in the presence of thiol groups. The physiological implications of this interaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

NTR:

NADH thioredoxin reductase

NTS:

NADPH–thioredoxin system

TRX:

Thioredoxin

References

  • Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schurmann P, Droux M, Buchanan BB (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647

    Article  PubMed  CAS  Google Scholar 

  • Behm M, Jacquot JP (2000) Isolation and characterization of thioredoxin h from poplar xylem. Plant Physiol Biochem 38:363–369

    Article  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  PubMed  CAS  Google Scholar 

  • Burner U, Obinger C (1997) Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett 411:269–274

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266:496–507

    Article  PubMed  CAS  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Laurent P, Sautiere PE, Martin F, Jacquot JP (2002) Isolation and characterization of an extended thioredoxin h from poplar. Physiol Plant 114:165–171

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–468

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2004a) The thioredoxin h system of higher plants. Plant Physiol Biochem 42:265–271

    Article  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Gerard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004b) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101:14545–14550

    Article  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35

    Article  PubMed  CAS  Google Scholar 

  • Goldman R, Stoyanovsky DA, Day BW (1995) Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Biochemistry 34:4765–4772

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Detweiler CD, Mason RP (2004) Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct. J Biol Chem 279:13272–13283

    Article  PubMed  CAS  Google Scholar 

  • Hiner AN, Rodríuez-López JN, Arnao MB, Arnao MB, Lloyd Raven E, Garcia-Canovas F, Acosta M (2000) Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochem J 348(2):321–328

    Article  PubMed  CAS  Google Scholar 

  • Hiner AN, Martínez JI, Arnao MB Acosta M, Turner DD, Lloyd Raven E, Rodriguez-Lopez JN (2001) Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide. Eur J Biochem 268:3091–3098

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Rivera-Madrid R, Marinho P, Kollarova M, Le Marechal P, Miginiac-Maslow M, Meyer Y (1994) Arabidopsis thaliana NAPHP thioredoxin reductase. cDNA characterization and expression of the recombinant protein in Escherichia coli. J Mol Biol 235:1357–1363

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  PubMed  CAS  Google Scholar 

  • Lad L, Mewies M, Raven EL (2002) Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites. Biochemistry 41:13774–13781

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149

    Article  PubMed  CAS  Google Scholar 

  • Mandelman D, Jamal J, Poulos TL (1998) Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography. Biochemistry 37:17610–17617

    Article  PubMed  CAS  Google Scholar 

  • Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe CL, Ott M, Patel N, Singh K, Mistry SC, Goff HM, Raven EL (2004) Autocatalytic formation of green heme: evidence for H2O2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase. J Am Chem Soc 126:16242–16248

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347:394–402

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antiox Red Signal 7:919–929

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365

    Article  Google Scholar 

  • Sharp KH, Mewies M, Moody PC, Raven EL (2003a) Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Biol 10:303–307

    Article  CAS  Google Scholar 

  • Sharp KH, Moody PCE, Raven EL (2003b) A new framework for understanding substrate binding and functional diversity in heme peroxidases. Dalton Trans 22:4208–4215

    Article  CAS  Google Scholar 

  • Sharp KH, Moody PCE, Brown KA, Raven EL (2004) Crystal structure of the ascorbate peroxidase–salicylhydroxamic acid complex. Biochemistry 43:8644–8651

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 372:1305–1319

    Article  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    Article  CAS  Google Scholar 

  • Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65:1629–1640

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45:18–27

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gelhaye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelhaye, E., Navrot, N., Macdonald, I. et al. Ascorbate peroxidase–thioredoxin interaction. Photosynth Res 89, 193–200 (2006). https://doi.org/10.1007/s11120-006-9100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9100-x

Keywords

Navigation