Skip to main content
Log in

Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GRX:

Glutaredoxin

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

MSR:

Methionine sulfoxide reductase

NO· :

Nitric oxide radical

NTR:

NADPH TRX reductase

PCD:

Programmed cell death

PKC:

Protein kinase C

PRX:

Peroxiredoxin

PTP:

Protein tyrosine phosphatase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOH:

Sulfenic acid

SO2H:

Sulfinic acid

SO3H:

Sulfonic acid

TPI:

Triose phosphate isomerase

TRX:

Thioredoxin

References

  • Adachi T, Pimentel DR, Heibeck T, Hou X, Lee YJ, Jiang B, Ido Y, Cohen RA (2004a) S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 279:29857–29862

    CAS  Google Scholar 

  • Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, Cohen RA (2004b) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Åslund F, Berndt KD, Holmgren A (1997) Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein–protein redox equilibria. J Biol Chem 272:30780–30786

    PubMed  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from cucurbita maxima and ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94:14150–14155

    PubMed  CAS  Google Scholar 

  • Balmer Y, Koller A, del Val G, Manieri W, Schürmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375

    PubMed  CAS  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schürmann P, Droux M, Buchanan BB (2004a) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647

    CAS  Google Scholar 

  • Balmer Y, Koller A, Val GD, Schürmann P, Buchanan BB (2004b) Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Photosynth Res 79:275–280

    CAS  Google Scholar 

  • Bandyopadhyay S, Starke DW, Mieyal JJ, Gronostajski RM (1998) Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J Biol Chem 273:392–397

    PubMed  CAS  Google Scholar 

  • Barrett WC, DeGnore JP, König S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB (1999a) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–6705

    CAS  Google Scholar 

  • Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB (1999b) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274:34543–34546

    CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    PubMed  CAS  Google Scholar 

  • Besse I, Wong JH, Kobrehel K, Buchanan BB (1996) Thiocalsin: a thioredoxin-linked, substrate-specific protease dependent on calcium. Proc Natl Acad Sci USA 93:3169–3175

    PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    PubMed  CAS  Google Scholar 

  • Bower MS, Matias DD, Fernandes-Carvalho E, Mazzurco M, Gu T, Rothstein SJ, Goring DR (1996) Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase. Plant Cell 8:1641–1650

    PubMed  CAS  Google Scholar 

  • Bréhélin C, Mouaheb N, Verdoucq L, Lancelin JM, Meyer Y (2000) Characterization of determinants for the specificity of Arabidopsis thioredoxins h in yeast complementation. J Biol Chem 275:31641–31647

    PubMed  Google Scholar 

  • Brigelius R, Lenzen R, Sies H (1982) Increase in hepatic mixed disulphide and glutathione disulphide levels elicited by paraquat. Biochem Pharmacol 31:1637–1641

    PubMed  CAS  Google Scholar 

  • Brigelius R, Muckel C, Akerboom TP, Sies H (1983) Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem Pharmacol 32:2529–2534

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Luan S (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot 56:1439–1447

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot JP (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73:215–222

    PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 93:4170–4174

    PubMed  CAS  Google Scholar 

  • Cabrillac D, Cock JM, Dumas C, Gaude T (2001) The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature 410:220–223

    PubMed  CAS  Google Scholar 

  • Caplan JF, Filipenko NR, Fitzpatrick SL, Waisman DM (2004) Regulation of annexin A2 by reversible glutathionylation. J Biol Chem 279:7740–7750

    PubMed  CAS  Google Scholar 

  • Cappiello M, Amodeo P, Mendez BL, Scaloni A, Vilardo PG, Cecconi I, Dal Monte M, Banditelli S, Talamo F, Micheli V, Giblin FJ, Corso AD and Mura U (2001) Modulation of aldose reductase activity through S-thiolation by physiological thiols. Chem Biol Interact 130–132:597–608

    PubMed  Google Scholar 

  • Cappiello M, Voltarelli M, Cecconi I, Vilardo PG, Dal Monte M, Marini I, Del Corso A, Wilson DK, Quiocho FA, Petrash JM, Mura U (1996) Specifically targeted modification of human aldose reductase by physiological disulfides. J Biol Chem 271:33539–33544

    PubMed  CAS  Google Scholar 

  • Cappiello M, Voltarelli M, Giannessi M, Cecconi I, Camici G, Manao G, Del Corso A, Mura U (1994) Glutathione dependent modification of bovine lens aldose reductase. Exp Eye Res 58:491–501

    PubMed  CAS  Google Scholar 

  • Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A, Ghezzi P (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci USA 99:9745–9749

    PubMed  CAS  Google Scholar 

  • Celli N, Motos-Gallardo A, Tamburro A, Favaloro B, Rotilio D (2003) Liquid chromatography-electrospray mass spectrometry study of cysteine-10 S-glutathiolation in recombinant glutathione S-transferase of Ochrobactrum anthropi. J Chromatogr B Analyt Technol Biomed Life Sci 787:405–413

    PubMed  CAS  Google Scholar 

  • Chai YC, Ashraf SS, Rokutan K, Johnston RB, Jr., Thomas JA (1994) S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys 310:273–281

    PubMed  CAS  Google Scholar 

  • Cho MJ, Wong JH, Marx C, Jiang W, Lemaux PG, Buchanan BB (1999) Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc Natl Acad Sci USA 96:14641–14646

    PubMed  CAS  Google Scholar 

  • Chu F, Ward NE, O’Brian CA (2003) PKC isozyme S-cysteinylation by cystine stimulates the pro-apoptotic isozyme PKC delta and inactivates the oncogenic isozyme PKC epsilon. Carcinogenesis 24:317–325

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752

    PubMed  CAS  Google Scholar 

  • Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E (2004) Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol 136:4088–4095

    PubMed  CAS  Google Scholar 

  • Collinson EJ, Grant CM (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278:22492–22497

    PubMed  CAS  Google Scholar 

  • Collinson EJ, Wheeler GL, Garrido EO, Avery AM, Avery SV, Grant CM (2002) The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem 277:16712–16717

    PubMed  CAS  Google Scholar 

  • Dafre AL, Sies H, Akerboom T (1996) Protein S-thiolation and regulation of microsomal glutathione transferase activity by the glutathione redox couple. Arch Biochem Biophys 332:288–294

    PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Milzani A, Rossi R (2005) S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism. Free Radic Biol Med 38:1501–1510

    PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2003) Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism. Free Radic Biol Med 35:1185–1193

    PubMed  CAS  Google Scholar 

  • Davis DA, Brown CA, Newcomb FM, Boja ES, Fales HM, Kaufman J, Stahl SJ, Wingfield P, Yarchoan R (2003) Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation. J Virol 77:3319–3325

    PubMed  CAS  Google Scholar 

  • Davis DA, Dorsey K, Wingfield PT, Stahl SJ, Kaufman J, Fales HM, Levine RL (1996) Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 35:2482–2488

    PubMed  CAS  Google Scholar 

  • Davis DA, Newcomb FM, Starke DW, Ott DE, Mieyal JJ, Yarchoan R (1997) Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J Biol Chem 272:25935–25940

    PubMed  CAS  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    PubMed  Google Scholar 

  • Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    PubMed  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    PubMed  CAS  Google Scholar 

  • Dixon DP, Fordham-Skelton AP, Edwards R (2005a) Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 44:7696–7703

    CAS  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005b) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    CAS  Google Scholar 

  • Dunlop RA, Rodgers KJ, Dean RT (2002) Recent developments in the intracellular degradation of oxidized proteins. Free Radic Biol Med 33:894–906

    PubMed  CAS  Google Scholar 

  • Eaton P, Fuller W, Shattock MJ (2002a) S-thiolation of HSP27 regulates its multimeric aggregate size independently of phosphorylation. J Biol Chem 277:21189–21196

    CAS  Google Scholar 

  • Eaton P, Byers HL, Leeds N, Ward MA, Shattock MJ (2002b) Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 277:9806–9811

    CAS  Google Scholar 

  • Eaton P, Shattock MJ (2002) Purification of proteins susceptible to oxidation at cysteine residues: identification of malate dehydrogenase as a target for S-glutathiolation. Ann N Y Acad Sci 973:529–532

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186

    PubMed  CAS  Google Scholar 

  • Feng Y, Zhong N, Rouhier N, Hase T, Kusunoki M, Jacquot J, Jin C, Xia B (2006) Structural Insight into Poplar Glutaredoxin C1 with a Bridging Iron–Sulfur Cluster at the Active Site. Biochemistry 45:7998–8008

    PubMed  CAS  Google Scholar 

  • Fernandes AP, Fladvad M, Berndt C, Andresen C, Lillig CH, Neubauer P, Sunnerhagen M, Holmgren A, Vlamis-Gardikas A (2005) A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem 280:24544–24552

    PubMed  CAS  Google Scholar 

  • Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74

    PubMed  CAS  Google Scholar 

  • Fey V, Wagner R, Brautigam K, Pfannschmidt T (2005) Photosynthetic redox control of nuclear gene expression. J Exp Bot 56:1491–1498

    PubMed  CAS  Google Scholar 

  • Florencio FJ, Gadal P, Buchanan BB (1993) Thioredoxin-linked activation of the chloroplast and cytosolic forms of Chlamydomonas reinhardtii glutamine synthetase. Plant Physiol Biochem 31:649–655

    CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert K-J (1997) Photo-oxidative stress in plants. Physiol Plant 92:696–717

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plantarum 119:355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 99:3505–3510

    PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Villa P, Eberini I, Vandekerckhove J, Gianazza E, Ghezzi P (2003) Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 3: 1154–1161

    PubMed  CAS  Google Scholar 

  • Fratelli M, Gianazza E, Ghezzi P (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 1:365–376

    PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448

    PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Gérard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004a) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101: 14545–14550

    CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2004b) The thioredoxin h system of higher plants. Plant Physiol Biochem 42:265–271

    CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62: 24–35

    PubMed  CAS  Google Scholar 

  • Ghezzi P (2005a) Regulation of protein function by glutathionylation. Free Radic Res 39:573–580

    CAS  Google Scholar 

  • Ghezzi P (2005b) Oxidoreduction of protein thiols in redox regulation. Biochem Soc Trans 33:1378–1381

    CAS  Google Scholar 

  • Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972

    PubMed  CAS  Google Scholar 

  • Ghezzi P, Casagrande S, Massignan T, Basso M, Bellacchio E, Mollica L, Biasini E, Tonelli R, Eberini I, Gianazza E, Dai WW, Fratelli M, Salmona M, Sherry B, Bonetto V (2006) Redox regulation of cyclophilin A by glutathionylation. Proteomics 6:817–825

    PubMed  CAS  Google Scholar 

  • Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol 107:330–351

    PubMed  CAS  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    PubMed  CAS  Google Scholar 

  • Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 251:8–28

    PubMed  CAS  Google Scholar 

  • Gopalan G, He Z, Balmer Y, Romano P, Gupta R, Heroux A, Buchanan BB, Swaminathan K, Luan S (2004) Structural analysis uncovers a role for redox in regulating FKBP13, an immunophilin of the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101:13945–13950

    PubMed  CAS  Google Scholar 

  • Goyer A, Haslekas C, Miginiac-Maslow M, Klein U, Le Maréchal P, Jacquot JP, Decottignies P (2002) Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii. Eur J Biochem 269:272–282

    PubMed  CAS  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541

    PubMed  CAS  Google Scholar 

  • Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656

    PubMed  CAS  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    PubMed  CAS  Google Scholar 

  • Henmi K, Demura T, Tsuboi S, Fukuda H, Iwabuchi M, Ogawa K (2005) Change in the redox state of glutathione regulates differentiation of tracheary elements in Zinnia cells and Arabidopsis roots. Plant Cell Physiol 46:1757–1765

    PubMed  CAS  Google Scholar 

  • Henmi K, Tsuboi S, Demura T, Fukuda H, Iwabuchi M, Ogawa KI (2001) A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol 42:673–676

    PubMed  CAS  Google Scholar 

  • Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420

    PubMed  CAS  Google Scholar 

  • Hirasawa M, Schürmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC, Knaff DB (1999) Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes. Biochemistry 38:5200–5205

    PubMed  CAS  Google Scholar 

  • Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94:3633–3638

    PubMed  CAS  Google Scholar 

  • Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem Biophys Res Commun 274:177–182

    PubMed  CAS  Google Scholar 

  • Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274:27891–27897

    PubMed  CAS  Google Scholar 

  • Holmgren A (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci USA 73:2275–2279

    PubMed  CAS  Google Scholar 

  • Holmgren A (2000) Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2:811–820

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C, Lillig CH (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33:1375–1377

    PubMed  CAS  Google Scholar 

  • Hoppe G, Chai YC, Crabb JW, Sears J (2004) Protein s-glutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone. Exp Eye Res 78:1085–1092

    PubMed  CAS  Google Scholar 

  • Huang KP, Huang FL (2002) Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem Pharmacol 64:1049–1056

    PubMed  CAS  Google Scholar 

  • Humphries KM, Juliano C, Taylor SS (2002) Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem 277:43505–43511

    PubMed  CAS  Google Scholar 

  • Hunter SC, Ohlrogge JB (1998) Regulation of spinach chloroplast acetyl-CoA carboxylase. Arch Biochem Biophys 359:170–178

    PubMed  CAS  Google Scholar 

  • Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, Murphy MP (2005) Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 7:999–1010

    PubMed  CAS  Google Scholar 

  • Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 100:5634–5639

    PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195:456–463

    PubMed  CAS  Google Scholar 

  • Issakidis-Bourguet E, Mouaheb N, Meyer Y, Miginiac-Maslow M (2001) Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. Plant J 25:127–135

    PubMed  CAS  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    PubMed  CAS  Google Scholar 

  • Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64:1065–1069

    PubMed  CAS  Google Scholar 

  • Jahngen-Hodge J, Obin MS, Gong X, Shang F, Nowell TR, Jr., Gong J, Abasi H, Blumberg J, Taylor A (1997) Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 272:28218–28226

    PubMed  CAS  Google Scholar 

  • Ji Y, Akerboom TP, Sies H, Thomas JA (1999) S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys 362:67–78

    PubMed  CAS  Google Scholar 

  • Johansson C, Lillig CH, Holmgren A (2004) Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279:7537–7543

    PubMed  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    PubMed  CAS  Google Scholar 

  • Jung CH, Thomas JA (1996) S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys 335:61–72

    PubMed  CAS  Google Scholar 

  • Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci USA 95:11584–11589

    PubMed  CAS  Google Scholar 

  • Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643–646

    PubMed  CAS  Google Scholar 

  • Kil IS, Park JW (2005) Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J Biol Chem 280:10846–10854

    PubMed  CAS  Google Scholar 

  • Kim G, Levine RL (2005) Molecular determinants of S-glutathionylation of carbonic anhydrase 3. Antioxid Redox Signal 7:849–854

    PubMed  CAS  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, Beyer WF, Jr., Keng T, DeAngelo J, Hausladen A, Stamler JS (2002) OxyR: a molecular code for redox-related signaling. Cell 109:383–396

    PubMed  CAS  Google Scholar 

  • Klatt P, Molina EP, De Lacoba MG, Padilla CA, Martinez-Galesteo E, Barcena JA, Lamas S (1999a) Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. Faseb J 13:1481–1490

    CAS  Google Scholar 

  • Klatt P, Molina EP, Lamas S (1999b) Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation. J Biol Chem 274:15857–15864

    CAS  Google Scholar 

  • Klatt P, Pineda Molina E, Perez-Sala D, Lamas S (2000) Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation. Biochem J 349:567–578

    PubMed  CAS  Google Scholar 

  • Kobrehel K, Wong JH, Balogh A, Kiss F, Yee BC, Buchanan BB (1992) Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol 99:919–924

    Article  PubMed  CAS  Google Scholar 

  • Koester MK, Pullan LM, Noltmann EA (1981) The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase. Arch Biochem Biophys 211:632–642

    PubMed  CAS  Google Scholar 

  • König J, Baier M, Horling F, Kahmann U, Harris G, Schürmann P, Dietz KJ (2002) The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci USA 99:5738–5743

    PubMed  Google Scholar 

  • Kosower NS, Kosower EM (1987) Formation of disulfides with diamide. Methods Enzymol 143: 264–270

    PubMed  CAS  Google Scholar 

  • Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci USA 101:3759–3764

    PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Embo J 22:2623–2633

    PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149

    PubMed  CAS  Google Scholar 

  • Landino LM, Moynihan KL, Todd JV, Kennett KL (2004) Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun 314:555–560

    PubMed  CAS  Google Scholar 

  • Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. Iv. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444

    PubMed  CAS  Google Scholar 

  • Lemaire SD (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res 79:305–318

    PubMed  CAS  Google Scholar 

  • Lemaire SD, Collin V, Keryer E, Issakidis-Bourguet E, Lavergne D, Miginiac-Maslow M (2003b) Chlamydomonas reinhardtii: a model organism for the study of the thioredoxin family. Plant Physiol Biochem 41:513–521

    CAS  Google Scholar 

  • Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M (2003a) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543:87–92

    CAS  Google Scholar 

  • Lemaire SD, Guillon B, Le Maréchal P, Keryer E, Miginiac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 101:7475–7480

    PubMed  CAS  Google Scholar 

  • Lemaire SD, Miginiac-Maslow M (2004) The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynth Res 82:203–220

    PubMed  CAS  Google Scholar 

  • Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA 102:6225–6230

    PubMed  CAS  Google Scholar 

  • Lillig CH, Berndt C, Vergnolle O, Lonn ME, Hudemann C, Bill E, Holmgren A (2005) Characterization of human glutaredoxin 2 as iron–sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci USA 102:8168–8173

    PubMed  CAS  Google Scholar 

  • Lillig CH, Potamitou A, Schwenn JD, Vlamis-Gardikas A, Holmgren A (2003) Redox regulation of 3′-phosphoadenylylsulfate reductase from Escherichia coli by glutathione and glutaredoxins. J Biol Chem 278:22325–22330

    PubMed  CAS  Google Scholar 

  • Lillig CH, Prior A, Schwenn JD, Åslund F, Ritz D, Vlamis-Gardikas A, Holmgren A (1999) New thioredoxins and glutaredoxins as electron donors of 3′-phosphoadenylylsulfate reductase. J Biol Chem 274:7695–7698

    PubMed  CAS  Google Scholar 

  • Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Lowenhielm HB, Holmgren A, Cotgreave IA (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406:229–240

    PubMed  CAS  Google Scholar 

  • Lindahl M, Florencio FJ (2003) Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc Natl Acad Sci USA 100:16107–16112

    PubMed  CAS  Google Scholar 

  • Maeda K, Finnie C, Svensson B (2004) Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms. Biochem J 378:497–507

    PubMed  CAS  Google Scholar 

  • Maeda K, Finnie C, Svensson B (2005) Identification of thioredoxin h-reducible disulphides in proteomes by differential labelling of cysteines: insight into recognition and regulation of proteins in barley seeds by thioredoxin h. Proteomics 5:1634–1644

    PubMed  CAS  Google Scholar 

  • Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci USA 101:3780–3785

    PubMed  CAS  Google Scholar 

  • Mannervik B, Axelsson K (1980) Role of cytoplasmic thioltransferase in cellular regulation by thiol-disulphide interchange. Biochem J 190:125–130

    PubMed  CAS  Google Scholar 

  • Marchand C, Le Maréchal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706

    PubMed  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin—a fold for all reasons. Structure 3:245–250

    PubMed  CAS  Google Scholar 

  • Marx C, Wong JH, Buchanan BB (2003) Thioredoxin and germinating barley: targets and protein redox changes. Planta 216:454–460

    PubMed  CAS  Google Scholar 

  • Mestres-Ortega D, Meyer Y (1999) The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240:307–316

    PubMed  CAS  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    PubMed  CAS  Google Scholar 

  • Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433

    PubMed  CAS  Google Scholar 

  • Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiac-Maslow M, Noctor G, Lemaire SD (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci USA 102:16478–16483

    PubMed  CAS  Google Scholar 

  • Mikkelsen R, Mutenda KE, Mant A, Schürmann P, Blennow A (2005) Alpha-glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc Natl Acad Sci USA 102:1785–1790

    PubMed  CAS  Google Scholar 

  • Minakuchi K, Yabushita T, Masumura T, Ichihara K, Tanaka K (1994) Cloning and sequence analysis of a cDNA encoding rice glutaredoxin. FEBS Lett 337:157–160

    PubMed  CAS  Google Scholar 

  • Mohr S, Hallak H, de Boitte A, Lapetina EG, Brune B (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274:9427–9430

    PubMed  CAS  Google Scholar 

  • Molina-Navarro MM, Casas C, Piedrafita L, Belli G, Herrero E (2006) Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett 580:2273–2280

    PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229

    PubMed  CAS  Google Scholar 

  • Motohashi K, Koyama F, Nakanishi Y, Ueoka-Nakanishi H, Hisabori T (2003) Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cis–trans isomerase activity. J Biol Chem 278:31848–31852

    PubMed  CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  Google Scholar 

  • Mouaheb N, Thomas D, Verdoucq L, Monfort P, Meyer Y (1998) In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:3312–3317

    PubMed  CAS  Google Scholar 

  • Nakamura T, Ohno T, Hirota K, Nishiyama A, Nakamura H, Wada H, Yodoi J (1999) Mouse glutaredoxin—cDNA cloning, high level expression in E. coli and its possible implication in redox regulation of the DNA binding activity in transcription factor PEBP2. Free Radic Res 31:357–365

    PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Nulton-Persson AC, Starke DW, Mieyal JJ, Szweda LI (2003) Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42:4235–4242

    PubMed  CAS  Google Scholar 

  • O’Brian CA, Chu F (2005) Post-translational disulfide modifications in cell signaling-role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radic Res 39:471–480

    PubMed  CAS  Google Scholar 

  • Ogawa K (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981

    PubMed  CAS  Google Scholar 

  • Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8

    PubMed  CAS  Google Scholar 

  • Ogawa K, Tasaka Y, Mino M, Tanaka Y, Iwabuchi M (2001) Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol 42:524–530

    PubMed  CAS  Google Scholar 

  • Park JB, Levine M (1996) Purification, cloning and expression of dehydroascorbic acid-reducing activity from human neutrophils: identification as glutaredoxin. Biochem J 315 (Pt 3):931–938

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    PubMed  CAS  Google Scholar 

  • Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D, Lamas S (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–14142

    PubMed  CAS  Google Scholar 

  • Pineda-Molina E, Lamas S (2002) S-glutathionylation of NF-kappa B subunit p50. Methods Enzymol 359: 268–279

    PubMed  CAS  Google Scholar 

  • Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347

    PubMed  CAS  Google Scholar 

  • Prieto-Alamo MJ, Jurado J, Gallardo-Madueno R, Monje-Casas F, Holmgren A, Pueyo C (2000) Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress. J Biol Chem 275:13398–13405

    PubMed  CAS  Google Scholar 

  • Ravi K, Brennan LA, Levic S, Ross PA, Black SM (2004) S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proc Natl Acad Sci USA 101:2619–2624

    PubMed  CAS  Google Scholar 

  • Ravichandran V, Seres T, Moriguchi T, Thomas JA, Johnston RB Jr (1994) S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015

    PubMed  CAS  Google Scholar 

  • Reddy S, Jones AD, Cross CE, Wong PS, Van Der Vliet A (2000) Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue. Biochem J 347 Pt 3:821–827

    PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    PubMed  CAS  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005a) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552

    CAS  Google Scholar 

  • Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005b) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    CAS  Google Scholar 

  • Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13:1109–1121

    PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2002) Glutaredoxin-dependent peroxiredoxin from poplar: protein–protein interaction and catalytic mechanism. J Biol Chem 277:13609–13614

    PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Gualberto JM, Jordy MN, De Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot JP (2004a) Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol 134:1027–1038

    CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2004b) Plant glutaredoxins: still mysterious reducing systems. Cell Mol Life Sci 61:1266–1277

    CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gérard J, de Faÿ E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309

    PubMed  CAS  Google Scholar 

  • Rouhier N, Jacquot JP (2005) The plant multigenic family of thiol peroxidases. Free Radic Biol Med 38:1413–1421

    PubMed  CAS  Google Scholar 

  • Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7:919–929

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Kozaki A, Hatano M (1997) Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci USA 94:11096–11101

    PubMed  CAS  Google Scholar 

  • Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K (1994) Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci USA 91:1672–1676

    PubMed  CAS  Google Scholar 

  • Schuppe-Koistinen I, Moldeus P, Bergman T, Cotgreave IA (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221:1033–1037

    PubMed  CAS  Google Scholar 

  • Schürmann P, Jacquot JP (2000) Plant Thioredoxin Systems Revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400

    PubMed  Google Scholar 

  • Shackelford RE, Heinloth AN, Heard SC, Paules RS (2005) Cellular and molecular targets of protein S-glutathiolation. Antioxid Redox Signal 7:940–950

    PubMed  CAS  Google Scholar 

  • Shelton MD, Chock PB, Mieyal JJ (2005) Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7:348–366

    PubMed  CAS  Google Scholar 

  • Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374:513–519

    PubMed  CAS  Google Scholar 

  • Sies H, Dafre AL, Ji Y, Akerboom TP (1998) Protein S-thiolation and redox regulation of membrane-bound glutathione transferase. Chem Biol Interact 111–112:177–185

    PubMed  Google Scholar 

  • Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432:159–184

    PubMed  CAS  Google Scholar 

  • Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95:45–52

    PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    PubMed  CAS  Google Scholar 

  • Starke DW, Chock PB, Mieyal JJ (2003) Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J Biol Chem 278:14607–14613

    PubMed  CAS  Google Scholar 

  • Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39:11121–11128

    PubMed  CAS  Google Scholar 

  • Sun QA, Kirnarsky L, Sherman S, Gladyshev VN (2001) Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA 98:3673–3678

    PubMed  CAS  Google Scholar 

  • Sun QA, Su D, Novoselov SV, Carlson BA, Hatfield DL, Gladyshev VN (2005) Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase. Biochemistry 44:14528–14537

    PubMed  CAS  Google Scholar 

  • Szederkenyi J, Komor E, Schobert C (1997) Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein from Ricinus communis L. and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Planta 202:349–356

    PubMed  CAS  Google Scholar 

  • Tamarit J, Belli G, Cabiscol E, Herrero E, Ros J (2003) Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Biol Chem 278:25745–25751

    PubMed  CAS  Google Scholar 

  • Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou G, Yodoi J (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. Embo J 21:1695–1703

    PubMed  CAS  Google Scholar 

  • Tao L, English AM (2004) Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione. Biochemistry 43:4028–4038

    PubMed  CAS  Google Scholar 

  • Thomas JA, Poland B, Honzatko R (1995) Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys 319:1–9

    PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    PubMed  CAS  Google Scholar 

  • Trebitsh T, Levitan A, Sofer A, Danon A (2000) Translation of chloroplast psbA mRNA is modulated in the light by counteracting oxidizing and reducing activities. Mol Cell Biol 20:1116–1123

    PubMed  CAS  Google Scholar 

  • Trebitsh T, Meiri E, Ostersetzer O, Adam Z, Danon A (2001) The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts. J Biol Chem 276:4564–4569

    PubMed  CAS  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274:19714–19722

    PubMed  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The Root meristemless1/Cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    PubMed  CAS  Google Scholar 

  • Vieira Dos Santos C, Cuine S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922

    PubMed  Google Scholar 

  • Vignols F, Bréhélin C, Surdin-Kerjan Y, Thomas D, Meyer Y (2005) A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci USA 102:16729–16734

    PubMed  CAS  Google Scholar 

  • Vlamis-Gardikas A, Holmgren A (2002) Thioredoxin and glutaredoxin isoforms. Methods Enzymol 347:286–296

    PubMed  CAS  Google Scholar 

  • Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    PubMed  CAS  Google Scholar 

  • Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276:47763–47766

    PubMed  CAS  Google Scholar 

  • Wang J, Tekle E, Oubrahim H, Mieyal JJ, Stadtman ER, Chock PB (2003) Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin. Proc Natl Acad Sci USA 100:5103–5106

    PubMed  CAS  Google Scholar 

  • Wang W, Oliva C, Li G, Holmgren A, Lillig CH, Kirk KL (2005) Reversible silencing of CFTR chloride channels by glutathionylation. J Gen Physiol 125:127–141

    PubMed  CAS  Google Scholar 

  • Ward NE, Chu F, O’Brian CA (2002) Regulation of protein kinase C isozyme activity by S-glutathiolation. Methods Enzymol 353:89–100

    Article  PubMed  CAS  Google Scholar 

  • Ward NE, Stewart JR, Ioannides CG, O’Brian CA (2000) Oxidant-induced S-glutathiolation inactivates protein kinase C-alpha (PKC-alpha): a potential mechanism of PKC isozyme regulation. Biochemistry 39:10319–10329

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wells WW (1999) The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin). Biochemistry 38:268–274

    PubMed  CAS  Google Scholar 

  • Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, Weber GJ, Dooley K, Davidson AJ, Schmid B, Paw BH, Shaw GC, Kingsley P, Palis J, Schubert H, Chen O, Kaplan J, Zon LI (2005) Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 436:1035–1039

    PubMed  CAS  Google Scholar 

  • Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2003) Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett 547:151–156

    PubMed  CAS  Google Scholar 

  • Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65:1629–1640

    PubMed  CAS  Google Scholar 

  • Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280:3125–3128

    PubMed  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    PubMed  CAS  Google Scholar 

  • Xia B, Vlamis-Gardikas A, Holmgren A, Wright PE, Dyson HJ (2001) Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. J Mol Biol 310:907–918

    PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    PubMed  CAS  Google Scholar 

  • Xing S, Rosso MG, Zachgo S (2005) ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development 132:1555–1565

    PubMed  CAS  Google Scholar 

  • Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45:18–27

    PubMed  CAS  Google Scholar 

  • Yano H, Wong JH, Lee YM, Cho MJ, Buchanan BB (2001) A strategy for the identification of proteins targeted by thioredoxin. Proc Natl Acad Sci USA 98:4794–4799

    PubMed  CAS  Google Scholar 

  • Zheng M, Åslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Agence Nationale de la Recherche Grant JC-45751 (to S.D.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane D. Lemaire.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelet, L., Zaffagnini, M., Massot, V. et al. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. Photosynth Res 89, 225–245 (2006). https://doi.org/10.1007/s11120-006-9096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9096-2

Keywords

Navigation