Skip to main content
Log in

Significance of the Excitonic Intensity Borrowing in the J-/H-aggregates of Bacteriochlorophylls/Chlorophylls

  • Regular paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A quantitative analysis of the excitonic intensity borrowing for the J-/H-aggregates of the bacteriochlorophylls/chlorophylls (BChls/Chls) in specific, and of porphyrins in general, is presented. The analysis is based on the argument that the mixing between the two energetically well-separated bands, such as the Q and B bands of BChls/Chls, should be considered important if the aggregated system possesses an excitonic superstate. A remarkably simple explanation of the significance of the excitonic intensity borrowing is given: superhyperchromism is manifested by the mediation of interband coupling between the superstates in␣the two well-separated bands of such aggregates. A comprehensive discussion on the significance of superhyperchromism and on its size-dependence is provided in connection with its effects on the absorption spectra of the BChl/Chl J- and H-aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

Chl:

chlorophyll

LHC:

light harvesting complex

References

  • AS Davydov, Theory of Molecular Excitons. New York: Plenum Press (1971).

    Google Scholar 

  • C Didraga, JA Klugist and J Knoester, Optical properties of helical cylindrical molecular aggregates: the homogeneous limit. J Phys Chem B 106 (2002) 11474-11486

    Article  CAS  Google Scholar 

  • C Didraga and J Knoester, Excitons in tubular molecular aggregates. J Lum 110 (2004) 239-245

    Article  CAS  Google Scholar 

  • RM Hochstrasser and JD Whiteman, Exciton band structure and properties of a real linear chain in a molecular crystal. J Chem Phys 56 (1972) 5945-5958

    Article  CAS  Google Scholar 

  • R Hoffmann, Excitons by second quantization. Radiat Res 20 (1963) 140-148

    Article  Google Scholar 

  • RS Knox and BQ Spring, Dipole strengths in the chlorophylls. Photochem Photobiol 77 (2003) 497-501

    Article  PubMed  CAS  Google Scholar 

  • T Kobayashi, J-aggregates. Singapore: World Scientific (1996).

    Google Scholar 

  • VI Novoderezhkin, AS Taisova and ZG Fetisova, Unit building block of the oligomeric chlorosomal antenna of green photosynthetic bacterium Chloroflexus aurantiacus: modeling of the nonlinear optical spectra. Chem Phys Lett 335 (2001) 234-240

    Article  CAS  Google Scholar 

  • VI Prokhorenko, DB Steensgaard and AR Holzwarth, Exciton dynamics in the chlorosomal antenna of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79 (2000) 2105-2120

    Article  PubMed  CAS  Google Scholar 

  • J Psencik, TP Ikonen, P Laurinmaki, MC Merchel, SJ Butcher, RE Serimaa and R Tuma, Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87 (2004) 1165-1172

    Article  PubMed  CAS  Google Scholar 

  • H Scheer, Chlorophylls. Ann Arbor, MI: CRC Press (1991).

    Google Scholar 

  • A Scherz and WW Parson, Oligomers of bacteriochlophyll and bacteriophyophytin with spectroscopic properties resembling those found in photosynthetic bacteria. Biochim Biophys Acta 766 (1984a) 653-665

    Article  CAS  Google Scholar 

  • A Scherz and WW Parson, Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766 (1984b) 666-678

    Article  CAS  Google Scholar 

  • V Sundström, T Pullerits and R Grondelle van, Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103 (1999) 2327-2346

    Article  Google Scholar 

  • H Tamiaki, M Amakawa, AR Holzwarth and K Schaffner, Aggregation of synthetic metallochlorins in hexane. A model of chlorosomal bacteriochlorophyll self-assemblies in green bacteria. Photosynth Res 71 (2002) 59-67

    Article  PubMed  CAS  Google Scholar 

  • Tinoco I (1960) Hypochromism in polynucleotides. J Am Chem Soc 82: 4785–4790; corrected in (1961) J Chem Phys 34: 1067

  • M Umetsu, ZY Wang, M Kobayashi and T Nozawa, Interaction of photosynthetic pigments with various organic solvents: magnetic circular dichroism approach and application to chlorosomes. Biochim Biophys Acta 1410 (1999) 19-31

    Article  PubMed  CAS  Google Scholar 

  • H Amerongen Van, L Valkunas and R Grondelle van, Photosynthetic Excitons. Singapore: World Scientific (2000).

    Google Scholar 

  • H Amerongen Van and R Grondelle van, Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105 (2001) 604-617

    Article  CAS  Google Scholar 

  • M Wendling, MA Przyjalgowski, D Gülen, SIE Vulto, TJ Aartsma, R Grondelle van and H Amerongen van, The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii. Refining experiments and simulations. Photosynth Res 71 (2002) 99-123

    Article  PubMed  CAS  Google Scholar 

  • H Yı ıldı ırı ım, Eİ İşeri and D Gülen, A quantitative analysis of excitonic superhyperchromism in porphyrin J-/H-aggregates. Chem Phys Lett 391 (2004) 302-307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Gülen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gülen, D. Significance of the Excitonic Intensity Borrowing in the J-/H-aggregates of Bacteriochlorophylls/Chlorophylls. Photosynth Res 87, 205–214 (2006). https://doi.org/10.1007/s11120-005-8408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-8408-2

Keywords

Navigation