Skip to main content
Log in

Models for Proton-coupled Electron Transfer in Photosystem II

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2006

Abstract

The coupling of proton and electron transfers is a key part of the chemistry of photosynthesis. The oxidative side of photosystem II (PS II) in particular seems to involve a number of proton-coupled electron transfer (PCET) steps in the S-state transitions. This mini-review presents an overview of recent studies of PCET model systems in the authors’ laboratory. PCET is defined as a chemical reaction involving concerted transfer of one electron and one proton. These are thus distinguished from stepwise pathways involving initial electron transfer (ET) or initial proton transfer (PT). Hydrogen atom transfer (HAT) reactions are one class of PCET, in which H+ and e are transferred from one reagent to another: AH+B→A+BH, roughly along the same path. Rate constants for many HAT reactions are found to be well predicted by the thermochemistry of hydrogen transfer and by Marcus Theory. This includes organic HAT reactions and reactions of iron-tris(α-diimine) and manganese-(μ-oxo) complexes. In PS II, HAT has been proposed as the mechanism by which the tyrosine Z radical (YZ) oxidizes the manganese cluster (the oxygen evolving complex, OEC). Another class of PCET reactions involves transfer of H+ and e in different directions, for instance when the proton and electron acceptors are different reagents, as in AH–B+C+→A–HB++C. The oxidation of YZ by the chlorophyll P680 + has been suggested to occur by this mechanism. Models for this process – the oxidation of phenols with a pendent base – are described. The oxidation of the OEC by YZ could also occur by this second class of PCET reactions, involving an Mn–O–H fragment of the OEC. Initial attempts to model such a process using ruthenium-aquo complexes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PS II:

Photosystem II

PCET:

proton-coupled electron transfer

ET:

electron transfer

PT:

proton transfer

HAT:

hydrogen atom transfer

OEC:

oxygen evolving complex

YZ or TyrZOH:

tyrosine Z, Tyr161 of the D1 subunit (of Thermosynechococcus elongatus)

YZ or TyrZO:

the phenoxyl radical of YZ

P680+ :

oxidized form of the redox-active chlorophyll cluster

His:

histidine

BDE:

bond dissociation enthalpy

BDFE:

bond dissociation free energy

Fe II (H 2 bim ) :

iron(II) tris(2,2′-bi-imidazoline) complex, [Fe(H2bim)3](ClO4)2

Fe III (Hbim) :

the oxidized and singly deprotonated form of Fe II (H 2 bim)

Fe II (H 2 bip) :

iron(II) tris(2,2′-bi-1,4,5,6-tetrahydropyrimidine) complex, [Fe(H2bip)3](ClO4)2

Fe III (Hbip) :

the oxidized and deprotonated form of complex Fe II (H 2 bip)

TEMPO:

2,2,6,6-tetramethyl-1-piperidinyloxy

TEMPOH:

2,2,6,6,-tetramethyl-1-hydroxypiperidine

HOAr–NH 2 :

2-(aminodiphenyl- m ethyl)-4,6-di-tert-butylphenol

Ar3N:

triarylamine

Cp2Fe:

ferrocene

Ox + :

a one-electron oxidant

tol:

tolyl (p-C6H4CH3)

DFT:

density functional theory

napy:

naphthyridine (1,8-diazanaphthalene)

bpy:

2,2′-bipyridine

binapy:

3,3′-binaphthyridine

trpy:

2,2′,6′,2′′-terpyridine

CV:

cyclic voltammogram

References

  • DV Avila, CE Brown, KU Ingold and J Lusztyk, Solvent effects on the competitive β-scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem. J Am Chem Soc 115 (1993) 466-470

    Article  CAS  Google Scholar 

  • MJ Baldwin and VL Pecoraro, Energetics of proton-coupled electron transfer in high-valent Mn2(μ-O)2 systems: models for water oxidation by the oxygen-evolving complex of Photosystem II. J Am Chem Soc 118 (1996) 11325-11326

    Article  CAS  Google Scholar 

  • J Biesiadka, B Bernhard Loll, J Kern, K-D Irrgang and A Zouni, Crystal structure of cyanobacterial photosystem II at 3.2 Å resolution: a closer look at the Mn-cluster. Phys Chem Chem Phys 6 (2004) 4733-4736

    Article  CAS  Google Scholar 

  • RA Binstead, LK Stultz and TJ Meyer, Proton-coupled electron transfer in acetonitrile solution. Irreversible disproportionation of [RuIII(bpy)2 (py)(OH)]2+. Inorg Chem 34 (1995) 546-551

    Article  CAS  Google Scholar 

  • SJ Blanksby and GB Ellison, Bond dissociation energies of organic molecules. Acc Chem Res 36 (2003) 255-263

    Article  PubMed  CAS  Google Scholar 

  • FG Bordwell, JP Cheng, GZ Ji, AV Satish and X Zhang, Bond dissociation energies in DMSO related to the gas phase values. J Am Chem Soc 113 (1991) 9790-9795

    Article  CAS  Google Scholar 

  • FG Bordwell and JP Cheng, Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations. J Am Chem Soc 113 (1991) 1736-1743

    Article  CAS  Google Scholar 

  • D Borgis and JT Hynes, Curve crossing formulation for proton transfer reactions in solution. J Phys Chem 100 (1996) 1118-1128

    Article  CAS  Google Scholar 

  • M Brookhart, B Grant and AF Volpe Jr., [(3,5-(CF3)2C6H3]4B]−[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes. Organometallics 11 (1992) 3920-3922

    Article  CAS  Google Scholar 

  • CJ Chang, CYM Chang, NH Damrauer and DG Nocera, Proton-coupled electron transfer: a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen. Biochim Biophys Acta Bioenerg 1655 (2004) 13-28

    Article  CAS  Google Scholar 

  • MT Caudle and VL Pecoraro, Thermodynamic viability of hydrogen atom transfer from water coordinated to the oxygen-evolving complex of Photosystem II. J Am Chem Soc 119 (1997) 3415-3416

    Article  CAS  Google Scholar 

  • K Chen, J Hirst, R Camba, CA Bonagura, CD Stout, BK Burgess and FA Armstrong, Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature 405 (2000) 814-817

    Article  PubMed  CAS  Google Scholar 

  • GK Cook and JM Mayer, C–H bond activation by metal oxo species: chromyl chloride oxidations of cyclooctane, isobutane, and toluene. J Am Chem Soc 117 (1995) 7139-7156

    Article  CAS  Google Scholar 

  • RI Cukier, A theory that connects proton-coupled electron-transfer and hydrogen-atom transfer reaction. J Phys Chem B 106 (2002) 1746-1757

    Article  CAS  Google Scholar 

  • RI Cukier and DG Nocera, Proton-coupled electron transfer. Annu Rev Phys Chem 49 (1998) 337-369

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Babcock GT (1996) In: Ort DR, and Yocum CF, (eds), Advances in Photosynthesis: The Light Reactions, Kluwer Academic Publication, Dordrecht, The Netherlands, Vol. 4, pp. 213–247

  • BA Diner, Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503 (2001) 147-163

    Article  PubMed  CAS  Google Scholar 

  • KM Doll and RG Finke, A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the neopentylcobalamin system combined with prior adocobalamin data. Inorg Chem 42 (2003) 4849-4856

    Article  PubMed  CAS  Google Scholar 

  • T Dziembowska and Z Rozwadowski, Application of the deuterium isotope effect on NMR chemical shift to study proton transfer equilibrium. Current Org Chem 5 (2001) 289-313

    Article  CAS  Google Scholar 

  • L Eberson, Electron Transfer Reactions in Organic Chemistry. Berlin: Springer-Verlag (1987).

    Google Scholar 

  • DC Eisenberg and JR Norton, Hydrogen-atom transfer reactions of transition metal hydrides. Isr J Chem 31 (1991) 55-61

    CAS  Google Scholar 

  • S Ferguson-Miller and GT Babcock, Heme/copper terminal oxidases. Chem Rev 96 (1996) 2889-2908

    Article  PubMed  CAS  Google Scholar 

  • KN Ferreira, TM Iverson, K Maghlaoui, J Barber and S Iweta, Architecture of the photosynthetic oxygen-evolving center. Science 303 (2004) 1831-1838

    Article  PubMed  CAS  Google Scholar 

  • Fischer H, (ed) (1984, 1994) Radical Reaction Rates in Liquids, Landolt-Börnstein New Series, Springer-Verlag, New York, 1984, Vol. 13 and 1994–1997, Vol. 18

  • KA Gardner, LL Kuehnert and JM Mayer, Hydrogen atom abstraction by permanganate: oxidations of arylalkanes in organic solvents. Inorg Chem 36 (1997) 2069-2078

    Article  PubMed  CAS  Google Scholar 

  • P Gilli, V Bertolasi, L Pretto, V Ferretti and G Gilli, Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in diketone enol RAHB systems. J Am Chem Soc 126 (2004) 3845-3855

    Article  PubMed  CAS  Google Scholar 

  • C Goussias, A Boussac and AW Rutherford, Photosystem II and photosynthetic oxidation of water: an overview. Phil Trans R Soc Lond B 357 (2002) 1369-1381

    Article  CAS  Google Scholar 

  • MS Graige, ML Paddock, JM Bruce, G Feher and MY Okamura, Mechanism of proton-coupled electron transfer for quinone (Q B ) reduction in reaction centers of Rb. Sphaeroides. J Am Chem Soc 118 (1996) 9005-9016

    Article  CAS  Google Scholar 

  • MS Graige, ML Paddock, G Feher and MY Okamura, Observation of the protonated semiquinone intermediate in isolated reaction centers from rhodobacter sphaeroides: implications for the mechanism of electron and proton transfer in proteins. Biochemistry 38 (1999) 11465-11473

    Article  PubMed  CAS  Google Scholar 

  • B Halliwell and JMC Gutteridge, Free Radicals in Biology and Medicine. New York: Oxford University Press (1999).

    Google Scholar 

  • S Hammes-Schiffer, Theoretical perspectives on proton-coupled electron transfer reactions. Acc Chem Res 34 (2001) 273-281

    Article  PubMed  CAS  Google Scholar 

  • S Hammes-Schiffer, Impact of enzyme motion on activity. Biochemistry 41 (2002) 13335-13343

    Article  PubMed  CAS  Google Scholar 

  • TK Harris and GJ Turner, Structural basis of perturbed pK a values of catalytic groups in enzyme active sites. IUBMB Life 53 (2002) 85-98

    PubMed  CAS  Google Scholar 

  • K Izutsu, Acid-Base Dissociation Constants in Dipolar Aprotic Solvents. Boston, MA: Blackwell Scientific Publications (1990).

    Google Scholar 

  • KB Jensen, CJ McKenzie and JZ Pedersen, Indication of a hydrogen-atom abstraction reaction relevant to a mechanistic proposal for the oxygen-evolving complex of Photosystem II. Inorg Chem 40 (2001) 5066-5067

    Article  PubMed  CAS  Google Scholar 

  • W Junge, M Haumann, R Ahlbrink, A Mulkidjanian and J Clausen, Electrostatics and proton transfer in photosynthetic water oxidation. Phil Trans R Soc Lond B 357 (2002) 1407-1418

    Article  CAS  Google Scholar 

  • Free Radicals. New York: Wiley (1973).

    Google Scholar 

  • A Koll and P Wolschann, Mannich bases as model compounds for intramolecular hydrogen bonding. Part I. Solid state structures and molecular calculations. Montasch Chem 127 (1996) 475-486

    Article  CAS  Google Scholar 

  • H Kuhne and GW Brudvig, Proton-coupled electron transfer involving tyrosine Z in Photosystem II. J Phys Chem B 106 (2002) 8189-8196

    Article  CAS  Google Scholar 

  • AS Larsen, K Wang, MA Lockwood, GL Rice, TJ Won, S Lovell, M Sadílek, F Tureček and JM Mayer, Hydrocarbon oxidation by Bis-μ-Oxo manganese dimers: electron transfer, hydride transfer, and hydrogen atom transfer mechanisms. J Am Chem Soc 124 (2002) 10112-10123

    Article  PubMed  CAS  Google Scholar 

  • Z-X Liang and JP Klinman, Structural bases of hydrogen tunneling in enzymes: progress and puzzles. Curr Opin Struct Biol 14 (2004) 648-655

    Article  PubMed  CAS  Google Scholar 

  • EA Mader, AS Larsen and JM Mayer, Hydrogen atom transfer from Iron(II)-tris[2,2′-bi(tetrahydropyrimidine)] to TEMPO: a negative enthalpy of activation. J Am Chem Soc 126 (2004) 8066-8067

    Article  PubMed  CAS  Google Scholar 

  • RA Marcus and N Sutin, Electron transfers in chemistry and biology. Biochim Biophys Acta 811 (1985) 265-322

    CAS  Google Scholar 

  • Markle TF, Rhile IJ, Lam OP, DiPasquale AD and Mayer JM (2005) work in progress

  • JM Mayer, Hydrogen atom abstraction by metal-oxo complexes: understanding the analogy with organic radical reactions. Acc Chem Res 31 (1998) 441-450

    Article  CAS  Google Scholar 

  • Mayer JM (2000) Thermodynamic Influences on C–H Bond Oxidation in Biomimetic Oxidations Catalyzed by Transition Metal Complexes, In: Meunier B., (ed.), Imperial College, Chapter 1

  • JM Mayer, Proton-coupled electron transfer: a reaction chemist’s view. Annu Rev Phys Chem 55 (2004) 363-390

    Article  PubMed  CAS  Google Scholar 

  • Meyer TJ and Huynh MHV (2003) The remarkable reactivity of high oxidation state Ruthenium and Osmium Polypyridyl complexes. 42: 8140–8160

  • BA Moyer and TJ Meyer, Properties of the oxo/aqua system (bpy)2(py)RuO2+/(bpy)2(py)Ru(OH2)2+. Inorg Chem 20 (1981) 436-444

    Article  CAS  Google Scholar 

  • Nakajima H, Nagao H and Tanaka K (1996) Control of the coordination mode of 1,8-naphthyridine ligated to ruthenium(II) bipyridine complexes. J Chem Soc Dalton Trans 1405–1409

  • SF Nelsen and JR Pladziewicz, Intermolecular electron transfer reactivity determined from cross-rate studies. Acc Chem Res 35 (2002) 247-254

    Article  PubMed  CAS  Google Scholar 

  • Nemes A and Bakac A (2001) A Disproportionation of Aquachromyl(IV) Ion by Hydrogen Abstraction from coordinated water, Inorg Chem 40: 2720–2704

    Google Scholar 

  • NIST (2003) NIST Chemistry WebBook, NIST Standard Reference Database Number 69 – March 2003 Release, http://webbook.nist.gov/chemistry/

  • JHA Nugent, RJ Ball and MCW Evans, Photosynthetic water oxidation: the role of tyrosine radicals. Biochim Biophys Acta Bioenerg 1655 (2004) 217-221

    Article  CAS  Google Scholar 

  • Parker VD, Handoo KL, Roness F and Tilset M (1991) Electrode potentials and the thermodynamics of isodesmic reactions. 113: 7493–7498

  • RJ Pace and KA Åhrling, Water oxidation in PS II–H atom abstraction revisited. Biochim Biophys Acta Bioenerg 1655 (2004) 172-178

    Article  CAS  Google Scholar 

  • RP Pesavento and WA Donk van der, Tyrosyl radical cofactors. Adv Prot Chem 58 (2001) 317-385

    Article  CAS  Google Scholar 

  • I Pujols-Ayala and BA Barry, Tyrosyl radicals in Photosystem II. Biochim Biophys Acta Bioenerg 1655 (2004) 205-216

    Article  CAS  Google Scholar 

  • DL Reger, TD Wright, CA Little, JJS Lamba and MD Smith, Control of the stereochemical impact of the lone pair in Lead(II) Tris(pyrazolyl)methane complexes. Improved preparation of Na {B[3,5-(CF3)2C6H3]4}. Inorg Chem 40 (2001) 3810-3814

    Article  PubMed  CAS  Google Scholar 

  • G Renger, Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. Biochim Biophys Acta Bioenerg 1655 (2004) 195-204

    Article  CAS  Google Scholar 

  • IJ Rhile and JM Mayer, Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs.concerted pathways. Biochim Biophys Acta 1655 (2004a) 51-58

    Article  CAS  Google Scholar 

  • IJ Rhile and JM Mayer, One-electron oxidation of a hydrogen-bonded phenol occurs by concerted proton-coupled electron transfer. J Am Chem Soc 126 (2004b) 12718-12719

    Article  CAS  Google Scholar 

  • IJ Rhile and JM Mayer, Comment on “how single and bifurcated hydrogen bonds influence proton-migration rate constants, redox, and electronic properties of phenoxyl radicals” by Thomas et al. Angew Chem Int Ed 44 (2005) 2-3

    Article  CAS  Google Scholar 

  • JP Roth, JC Yoder, TJ Won and JM Mayer, Application of the Marcus cross relation to hydrogen atom transfer reactions. Science 294 (2001) 2524-2526

    Article  PubMed  CAS  Google Scholar 

  • W Ruttinger and GC Dismukes, Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem Rev 97 (1997) 1-24

    Article  PubMed  Google Scholar 

  • M Sjödin, S Styring, B Åkermark, L Sun and L Hammarström, Proton-coupled electron transfer from Tyrosine in a Tyrosine-Ruthenium-tris-bipyridine complex: comparison with TyrosineZ oxidation in Photosystem II. J Am Chem Soc 122 (2000) 3932-3936

    Article  CAS  Google Scholar 

  • M Sjödin, S Styring, H Wolpher, Y Xu, L Sun and L Hammarström, Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. J Am Chem Soc 122 (2005) 3932-3936

    Article  CAS  Google Scholar 

  • DW Snelgrove, J Lusztyk, JT Banks, P Mulder and KU Ingold, Kinetic solvent effects on hydrogen-atom abstractions: reliable, quantitative predictions via a single empirical equation. J Am Chem Soc 123 (2001) 469-477

    Article  CAS  Google Scholar 

  • JD Soper and JM Mayer, Slow hydrogen atom self-exchange between Os(IV) Anilide and Os(III) Aniline complexes: relationships with electron and proton transfer self exchange. J Am Chem Soc 125 (2003) 12217-12229

    Article  PubMed  CAS  Google Scholar 

  • SP Sorensen and WH Bruning, Ion pairing effects on electron transfer rate constants by electron spin resonance fast exchange line-width studies. Application to Tri-p-tolylamine and phenothiazine cations. J Am Chem Soc 95 (1973) 2445-2451

    Article  CAS  Google Scholar 

  • J Stubbe, DG Nocera, CS Yee and MCY Chang, Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?. Chem Rev 103 (2003) 2167-2202

    Article  PubMed  CAS  Google Scholar 

  • J Stubbe and WA Donk van der, Protein radicals in enzyme catalysis. Chem Rev 98 (1998) 705-762

    Article  PubMed  CAS  Google Scholar 

  • H-F Suen, SW Wilson, M Pomerantz and JL Walsh, Photosubstitution reactions of terpyridine complexes of ruthenium(II). Inorg Chem 28 (1989) 786-791

    Article  CAS  Google Scholar 

  • N Sutin, Theory of electron transfer reactions: insights and hindsights. Prog Inorg Chem 30 (1983) 441

    Article  CAS  Google Scholar 

  • JM Tedder, Which factors determine the reactivity and regioselectivity of free radical substitution and addition reactions?. Ang Chem Int Ed Engl 21 (1982) 401-410

    Article  Google Scholar 

  • Thomas F, Olivier JO, Jamet H, Hamman S, Saint-Aman E, Duboc C and Pierre JL (2004) How single and bifurcated hydrogen bonds influence proton-migration rate constants, redox, and electronic properties of phenoxyl radicals. Angew Chem Int Ed 43: 594–597; Angew Chem 116: 604–607

    Google Scholar 

  • RP Thummel, F Lefoulon, D Cantu and R Mahadevan, Annelated derivatives of 2-(2′-pyridyl)-1,8-naphthyridine and 2,2′-bi-1,8-naphthyridine. J Org Chem 49 (1984) 2208-2212

    Article  CAS  Google Scholar 

  • C Tommos and GT Babcock, Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31 (1998) 18-25

    Article  CAS  Google Scholar 

  • K Wang and JM Mayer, Oxidation of hydrocarbons by [(phen)2Mn(μ-O)2Mn(phen)2]3+ via hydrogen atom abstraction. J Am Chem Soc 119 (1997) 1470-1471

    Article  CAS  Google Scholar 

  • SC Weatherly, IV Yang, PA Armistead and HH Thorp, Proton-coupled electron transfer in guanine oxidation: effects of isotope solvent, and chemical modification. J Phys Chem B 107 (2003) 372-378

    Article  CAS  Google Scholar 

  • C Tommos, Electron, proton and hydrogen-atom transfers in photosynthetic water oxidation. Phil Trans R Soc Lond B 357 (2002) 1383-1394

    Article  CAS  Google Scholar 

  • JS Vrettos and GW Brudvig, Water oxidation chemistry of photosystem II. Phil Trans R Soc Lond B 357 (2002) 1395-1405

    Article  CAS  Google Scholar 

  • R Zong, F Naud, C Segal, J Burke, F Wu and R Thummel, Design and study of bi[1,8]naphthyridine ligands as potential photooxidation mediators in Ru(II) polypyridyl aquo complexes. Inorg Chem 43 (2004) 6195-6202

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Mayer.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11120-006-9053-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, J.M., Rhile, I.J., Larsen, F.B. et al. Models for Proton-coupled Electron Transfer in Photosystem II. Photosynth Res 87, 3–20 (2006). https://doi.org/10.1007/s11120-005-8164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-8164-3

Keywords

Navigation