Advertisement

Photosynthesis Research

, Volume 83, Issue 2, pp 117–133 | Cite as

Photosynthetic nitrate assimilation in cyanobacteria

  • Enrique Flores
  • José E. Frías
  • Luis M. Rubio
  • Antonia Herrero
Review

Abstract

Nitrate uptake and reduction to nitrite and ammonium are driven in cyanobacteria by photosynthetically generated assimilatory power, i.e., ATP and reduced ferredoxin. High-affinity nitrate and nitrite uptake takes place in different cyanobacteria through either an ABC-type transporter or a permease from the major facilitator superfamily (MFS). Nitrate reductase and nitrite reductase are ferredoxin-dependent metalloenzymes that carry as prosthetic groups a [4Fe–4S] center and Mo-bis-molybdopterin guanine dinucleotide (nitrate reductase) and [4Fe–4S] and siroheme centers (nitrite reductase). Nitrate assimilation genes are commonly found forming an operon with the structure: nir (nitrite reductase)-permease gene(s)-narB (nitrate reductase). When the cells perceive a high C to N ratio, this operon is transcribed from a complex promoter that includes binding sites for NtcA, a global nitrogen-control regulator that belongs to the CAP family of bacterial transcription factors, and NtcB, a pathway-specific regulator that belongs to the LysR family of bacterial transcription factors. Transcription is also affected by other factors such as CnaT, a putative glycosyl transferase, and the signal transduction protein PII. The latter is also a key factor for regulation of the activity of the ABC-type nitrate/nitrite transporter, which is inhibited when the cells are incubated in the presence of ammonium or in the absence of CO2. Notwithstanding significant advance in understanding the regulation of nitrate assimilation in cyanobacteria, further post-transcriptional regulatory mechanisms are likely to be discovered.

Keywords

CnaT ferredoxin nitrate permease nitrate reductase nitrite reductase NtcA NtcB PII protein 2-oxoglutarate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichi, M, Omata, T 1997Involvement of NtcB, a LysR family transcription factor, in nitrite activation of nitrate assimilation operon in the cyanobacterium Synechococcus sp strain PCC 7942.J Bacteriol17946714675PubMedGoogle Scholar
  2. Aichi, M, Takatani, N, Omata, T 2001Role of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp strain PCC 6803.J Bacteriol1835840584CrossRefPubMedGoogle Scholar
  3. Aldehni, MF, Sauer, J, Spielhaupter, C, Schmid, R, Forchhammer, K 2003Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942J Bacteriol18525822591CrossRefPubMedGoogle Scholar
  4. Arizmendi, JM, Serra, JL 1990Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosumBiochim Biophys Acta1040237244PubMedGoogle Scholar
  5. Arnon, DI 1984The discovery of photosynthetic phosphorylationTrends Biochem Sci9258262CrossRefGoogle Scholar
  6. Arnon, DI 1988The discovery of ferredoxin: the photosynthetic pathTrends Biochem Sci133033PubMedGoogle Scholar
  7. Barnard, A, Wolfe, A, Busby, S 2004Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomesCurr Opin Microbiol7102108CrossRefPubMedGoogle Scholar
  8. Bass, RB, Locher, KP, Borths, E, Poon, Y, Strop, P, Lee, A, Rees, DC 2003The structures of BtuCD and MscS and their implications for transporter and channel functionFEBS Lett555111115CrossRefPubMedGoogle Scholar
  9. Bird, C, Wyman, M 2003Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp strain WH 8103: effect of nitrogen source and availability on gene expression.Appl Environ Microbiol6970097018CrossRefPubMedGoogle Scholar
  10. Busch, W, Saier, MH Jr 2002The transporter classification (TC) system, 2002Crit Rev Biochem Mol Biol37287337CrossRefPubMedGoogle Scholar
  11. Cai, Y, Wolk, CP 1997Nitrogen deprivation of Anabaena sp strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate.J Bacteriol179258266PubMedGoogle Scholar
  12. Campbell, WH 1999Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiologyAnnu Rev Plant Physiol Plant Mol Biol50277303CrossRefPubMedGoogle Scholar
  13. Candau, P, Manzano, C, Losada, M 1976Bioconversion of light energy into chemical energy through reduction with water of nitrate to ammoniaNature262715717CrossRefGoogle Scholar
  14. Crane, BR, Siegel, LM, Getzoff, ED 1995Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anionsScience2705967PubMedGoogle Scholar
  15. Curdt, I, Singh, BB, Jakoby, M, Hachtel, W, Böhme, H 2000Identification of amino acid residues of nitrite reductase from Anabaena sp PCC 7120 involved in ferredoxin binding.Biochim Biophys Acta15436068PubMedGoogle Scholar
  16. Davidson, AL, Chen, J 2004ATP-binding cassette trasporters in bacteriaAnnu Rev Biochem73241268CrossRefPubMedGoogle Scholar
  17. Dufresne, A, Salanoubat, M, Partensky, F, Artiguenave, F, Axmann, IM, Barbe, V, Duprat, S, Galperin, MY, Koonin, EV, Gall, F, Makarova, KS, Ostrowski, M, Oztas, S, Robert, C, Rogozin, IB, Scanlan, DJ, Tandeau, N, Weissenbach, J, Wincker, P, Wolf, YI, Hess, WR 2003Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genomeProc Natl Acad Sci USA1001002010025CrossRefPubMedGoogle Scholar
  18. Flores, E, Herrero, A 1994Assimilatory nitrogen metabolism and its regulationBryant, DA eds. The Molecular Biology of CyanobacteriaKluwer Academic PublishersDordrecht, The Netherlands487517Google Scholar
  19. Flores, E, Guerrero, MG, Losada, M 1980Short-term ammonium inhibition of nitrate utilization by Anacystis nidulans and other cyanobacteriaArch Microbiol128137144CrossRefGoogle Scholar
  20. Flores, E, Guerrero, MG, Losada, M 1983aPhotosynthetic nature of nitrate uptake and reduction in the cyanobacterium Anacystis nidulansBiochim Biophys Acta722408416Google Scholar
  21. Flores, E, Romero, JM, Guerrero, MG, Losada,  1983bRegulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulansBiochim Biophys Acta725529532Google Scholar
  22. Flores, E, Herrero, A, Guerrero, MG 1987Nitrite uptake and its regulation in the cyanobacterium Anacystis nidulansBiochim Biophys Acta896103108Google Scholar
  23. Forchhammer, K 2004Global carbon/nitrogen control by P IIsignal transduction in cyanobacteria: from signals to targetsFEMS Microbiol Rev28319333CrossRefPubMedGoogle Scholar
  24. Forchhammer, K, Tandeau, de Marsac N 1995Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp strain PCC7942.J Bacteriol17720332040PubMedGoogle Scholar
  25. Forde, BG 2000Nitrate transporters in plants: structure, function and regulationBiochim Biophys Acta146521935PubMedGoogle Scholar
  26. Frazon, J, Dean, DR 2003Formation of iron–sulfur clusters in bacteria: an emerging field in bioinorganic chemistryCurr Opin Chem Biol7166173CrossRefPubMedGoogle Scholar
  27. Frías, JE, Flores, E, Herrero, A 1994Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp PCC 7120.Mol Microbiol14823832PubMedGoogle Scholar
  28. Frías, JE, Flores, E, Herrero, A 1997Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp strain PCC 7120.J Bacteriol179477486PubMedGoogle Scholar
  29. Frías, JE, Flores, E, Herrero, A 2000Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factorsMol Microbiol38613625CrossRefPubMedGoogle Scholar
  30. Frías, JE, Herrero, A, Flores, E 2003Open reading frame all0601 from Anabaena sp strain PCC 7120 represents a novel gene, cnaT, required for expression of the nitrate assimilation nir operon.J Bacteriol18550375044CrossRefPubMedGoogle Scholar
  31. Guerrero, MG, Manzano, C, Losada, M 1974Nitrite photoreduction by a cell-free preparation of Anacystis nidulansPlant Sci Lett3273278CrossRefGoogle Scholar
  32. Hattori, A 1962Light-induced reduction of nitrate, nitrite and hydroxylamine in a blue-green alga, Anabaena cylindricaPlant Cell Physiol3355369Google Scholar
  33. Hattori, A, Myers, J 1967Reduction of nitrate and nitrite by subcellular preparations of Anabaena cylindrica II. Reduction of nitrate to nitrite.Plant Cell Physiol8327337Google Scholar
  34. Hattori, A, Uesugi, I 1968Purification and properties of nitrite reductase from the blue-green alga Anabaena cylindricaPlant Cell Physiol9689699Google Scholar
  35. Herrero, A, Guerrero, MG 1986Regulation of nitrite reductase in the cyanobacterium Anacystis nidulansJ Gen Microbiol13224632468Google Scholar
  36. Herrero, A, Flores, E, Guerrero, MG 1981Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp strain7119, and Nostoc sp. strain 6719.J Bacteriol145175180PubMedGoogle Scholar
  37. Herrero, A, Flores, E, Guerrero, MG 1984Regulation of the nitrate reductase level in Anacystis nidulans: activity decay under nitrogen stressArch Biochem Biophys234454459CrossRefPubMedGoogle Scholar
  38. Herrero, A, Flores, E, Guerrero, MG 1985Regulation of nitrate reductase cellular levels in the cyanobacteria Anabaena variabilis and Synechocystis spFEMS Microbiol Lett262125CrossRefGoogle Scholar
  39. Herrero, A, Muro-Pastor, AM, Flores, E 2001Nitrogen control in cyanobacteriaJ Bacteriol183411425CrossRefPubMedGoogle Scholar
  40. Hill, R 1939Oxygen produced by isolated chloroplastsProc Royal Soc B127192210Google Scholar
  41. Hirasawa, M, Rubio, LM, Griffin, JL, Flores, E, Herrero, A, Li, J, Kim, SK, Hurley, JK, Tollin, G, Knaff, DB 2004Complex formation between ferredoxin and Synechococcus ferredoxin: nitrate oxidoreductaseBiochim Biophys Acta1608155162PubMedGoogle Scholar
  42. Huang, F, Parmryd, I, Nilsson, F, Persson, AL, Pakrasi, HB, Andersson, B, Norling, B 2003Proteomics of Synechocystis sp strain PCC 6803. Identification of plasma membrane proteins.Mol Cell Proteom1956966CrossRefGoogle Scholar
  43. Jepson, BJN, Anderson, LJ, Rubio, LM, Taylor, CJ, Butler, CS, Flores, E, Herrero, A, Butt, JN, Richardson, DJ 2004Tuning a nitrate reductase for function: the first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox propertiesJ Biol Chem2793221232218CrossRefPubMedGoogle Scholar
  44. Kikuchi, H, Aichi, M, Suzuki, I, Omata, T 1996Positive regulation by nitrite of the nitrate assimilation operon in the cyanobacteria Synechococcus sp strain PCC 7942 and Plectonema boryanum.J Bacteriol17858225825PubMedGoogle Scholar
  45. Knaff, DB 1996Ferredoxin and ferredoxin-dependent enzymesOrt, DRYocum, CF eds. Oxygenic Photosynthesis: the Light ReactionsKluwer Academic PublishersDordrecht, The Netherlands333361Google Scholar
  46. Knaff, DB, Hirasawa, M 1991Ferredoxin-dependent chloroplast enzymesBiochim Biophys Acta105693125PubMedGoogle Scholar
  47. Kobayashi, M, Rodríguez, R, Lara, C, Omata, T 1997Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp strain PCC 7942.J Biol Chem2722719727201CrossRefPubMedGoogle Scholar
  48. Kuznetsova, S, Knaff, DB, Hirasawa, M, Lagoutte, B, Setif, P 2004Mechanism of spinach chloroplast ferredoxin-dependent nitrite reductase: spectroscopic evidence for intermediate statesBiochemistry43510517CrossRefPubMedGoogle Scholar
  49. Lee, HM, Flores, E, Herrero, A, Houmard, J, Tandeau de Marsac, N 1998A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacteriumFEBS Lett427291295CrossRefPubMedGoogle Scholar
  50. Lee, HM, Flores, E, Forchhammer, K, Herrero, A, Tandeau, de Marsac N 2000Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the cyanobacterium Synechococcus spPCC7942.Eur J Biochem267591600CrossRefPubMedGoogle Scholar
  51. Locher, P, Bass, RB, Rees, DC 2003Breaching the barrierScience301603604CrossRefPubMedGoogle Scholar
  52. López-Lozano, A, Díez, J, El Alaoui, S, Moreno-Vivián, C, García-Fernández, JM 2002Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in non-axenic culturesFEMS Microbiol Ecol41151160CrossRefGoogle Scholar
  53. Luque, I, Herrero, A, Flores, E, Madueño, F 1992Clustering of genes involved in nitrate assimilation in the cyanobacterium SynechococcusMol Gen Genet232711CrossRefPubMedGoogle Scholar
  54. Luque, I, Flores, E, Herrero, A 1993Nitrite reductase gene from Synechococcus sp PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases.Plant Mol Biol2112011205CrossRefPubMedGoogle Scholar
  55. Luque, I, Flores, E, Herrero, A 1994aNitrate and nitrite transport in the cyanobacterium Synechococcus sp PCC 7942 are mediated by the same permease.Biochim Biophys Acta1184296298Google Scholar
  56. Luque, I, Flores, E, Herrero, A 1994bMolecular mechanism for the operation of nitrogen control in cyanobacteriaEMBO J1328622869Google Scholar
  57. Luque, I, Vázquez-Bermúdez, MF, Paz-Yepes, J, Flores, E, Herrero, A 2004In vivo activity of the nitrogen control transcription factor NtcA is subjected to metabolic regulation in Synechococcus sp strain PCC 7942.FEMS Microbiol Lett2364752CrossRefPubMedGoogle Scholar
  58. Madueño, F, Flores, E, Guerrero, MG 1987Competition between nitrate and nitrite uptake in the cyanobacterium Anacystis nidulansBiochim Biophys Acta896109112Google Scholar
  59. Madueño, F, Vega-Palas, MA, Flores, E, Herrero, A 1988A cytoplasmic-membrane protein repressible by ammonium in Synechococcus R2: altered expression in nitrate-assimilation mutantsFEBS Lett239289291CrossRefGoogle Scholar
  60. Maeda, SI, Omata, T 1997Substrate-binding lipoprotein of the cyanobacterium Synechococcus sp strain PCC 7942 involved in the transport of nitrate and nitrite.J Biol Chem27230363041CrossRefPubMedGoogle Scholar
  61. Maeda, S, Omata, T 2004A novel gene (narM) required for expression of nitrate reductase activity in the cyanobacterium Synechococcus elongatus strain PCC7942J Bacteriol18621072114CrossRefPubMedGoogle Scholar
  62. Maeda, SI, Kawaguchi, Y, Ohe, TA, Omata, T 1998cis-Acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the cyanobacterium Synechococcus sp strain PCC 7942.J Bacteriol18040804088PubMedGoogle Scholar
  63. Manzano, C, Candau, P, Gómez-Moreno, C, Relimpio, AM, Losada, M 1976Ferredoxindependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulansMol Cell Biochem10161169CrossRefPubMedGoogle Scholar
  64. Martín-Nieto, J, Flores, E, Herrero, A 1992Biphasic kinetic behavior of nitrate reductase from heterocystous, nitrogen-fixing cyanobacteriaPlant Physiol100157163Google Scholar
  65. McRee, DE, Richardson, DC, Richardson, JS, Siegel, LM 1986The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductaseJ Biol Chem2611027710281PubMedGoogle Scholar
  66. Meeks, JC, Wycoff, KL, Chapman, JS, Enderlin, CS 1983Regulation of expression of nitrate and dinitrogen assimilation by Anabaena speciesAppl Environ Microbiol4513511359Google Scholar
  67. Meeks, JC, Elhai, J, Thiel, T, Potts, M, Larimer, F, Lamerdin, J, Predki, P, Atlas, R 2001An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacteriumPhotosynth Res7085106CrossRefGoogle Scholar
  68. Mendel, RR, Hänsch,  2002Molybdoenzymes and molybdenum cofactors in plantsJ Exp Bot5316891698CrossRefPubMedGoogle Scholar
  69. Méndez, JM, Vega, JM 1981Purification and molecular properties of nitrite reductase from Anabaena sp 7119.Physiol Plant52714Google Scholar
  70. Merchán, F, Kindle, KL, Llama, MJ, Serra, JL, Fernández, E 1995Cloning and sequencing of the nitrate transport system from the thermophilic, filamentous cyanobacterium Phormidium laminosum: comparative analysis with the homologous system from Synechococcus sp PCC 7942.Plant Mol Biol28759766CrossRefPubMedGoogle Scholar
  71. Mikami, B, Ida, S 1984Purification and properties of ferredoxinΓÇônitrate reductase from the cyanobacterium Plectonema boryanumBiochim Biophys Acta791294304Google Scholar
  72. Miller, SR, Castenholz, RW 2001Ecological physiology of Synechococcus sp strain SH-94-5, a naturally occurring cyanobacterium deficient in nitrate assimilation.Appl Environ Microbiol6730023009CrossRefPubMedGoogle Scholar
  73. Moreno-Vivián, C, Cabello, P, Martínez-Luque, M, Blasco, R, Castillo, F 1999Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductasesJ Bacteriol18165736584PubMedGoogle Scholar
  74. Muro-Pastor, MI, Reyes, JC, Florencio, FJ 2001Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levelsJ Biol Chem2763832038328PubMedGoogle Scholar
  75. Nagore, D, Llarena, M, Llama, MJ, Serra, JL 2003Characterization of the N-terminal domain of NrtC, the ATP-binding subunit of ABC-type nitrate transporter of the cyanobacterium Phormidium laminosumBiochim Biophys Acta1623143153PubMedGoogle Scholar
  76. Ohmori, M, Ohmori, K, Strotmann, H 1977Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindricaArch Microbiol114225229CrossRefGoogle Scholar
  77. Omata, T 1991Cloning and characterization of the nrtA gene that encodes a 45-kDa protein involved in nitrate transport in the cyanobacterium Synechococcus PCC 7942Plant Cell Physiol32151157Google Scholar
  78. Omata, T, Ohmori, M, Arai, N, Ogawa, T 1989Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transportProc Natl Acad Sci USA8666126616Google Scholar
  79. Omata, T, Andriesse, X, Hirano, A 1993Identification and characterization of a gene cluster involved in nitrate transport of the cyanobacterium Synechococcus sp PCC7942.Mol Gen Genet236193202CrossRefPubMedGoogle Scholar
  80. Ortega, T, Castillo, F, Cárdenas, J 1976Photolysis of water coupled to nitrate reduction by Nostoc muscorum subcellular particlesBiochem Biophys Res Commun71885891PubMedGoogle Scholar
  81. Palenik, B, Brahamsha, B, Larimer, FW, Land, M, Hauser, L, Chain, P, Lamerdin, J, Regala, W, Allen, EE, McCarren, J, Paulsen, I, Dufresne, A, Partensky, F, Webb, EA, Waterbury, J 2003The genome of a motile marine SynechococcusNature42410371042Google Scholar
  82. Paneque, A, Ramírez, JM, del, Campo FF, Losada, M 1964Light and dark reduction of nitrite in a reconstituted enzymic systemJ Biol Chem23917371741PubMedGoogle Scholar
  83. Paz-Yepes, J, Flores, E, Herrero, A 2003Transcriptional effects of the signal transduction protein PII (glnB gene product) on NtcA-dependent genes in Synechococcus sp PCC 7942.FEBS Lett5434246CrossRefPubMedGoogle Scholar
  84. Persson, B, Argos, P 1996Topology prediction of membrane proteinsProtein Sci5363371PubMedGoogle Scholar
  85. Rajagopalan, KV 1996Biosynthesis of the molybdenum cofactorNeidhardt, FC eds. Escherichia coli and Salmonella: cellular and molecular biologyASM PressWashington, DC674679Google Scholar
  86. Rajagopalan, KV, Johnson, JL 1992The pterin molybdenum cofactorsJ Biol Chem2671019910202PubMedGoogle Scholar
  87. Rocap, G, Larimer, FW, Lamerdin, J, Malfatti, S, Chain, P, Ahlgren, NA, Arellano, A, Coleman, M, Hauser, L, Hess, WR, Johnson, ZI, Land, M, Lindell, D, Post, AF, Regala, W, Shah, M, Shaw, SL, Steglich, C, Sullivan, MB, Ting, CS, Tolonen, A, Webb, EA, Zinser, ER, Chisholm, SW 2003Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiationNature42410421047CrossRefPubMedGoogle Scholar
  88. Rodríguez, R, Lara, C, Guerrero, MG 1992Nitrate transport in the cyanobacterium Anacystis nidulans R2Kinetic and energetic aspects.Biochem J282639643PubMedGoogle Scholar
  89. Romero, JM, Flores, E, Guerrero, MG 1985Inhibition of nitrate utilization by amino acids in intact Anacystis nidulans cellsArch Microbiol14215CrossRefPubMedGoogle Scholar
  90. Rubio, LM, Herrero, A, Flores, E 1996A cyanobacterial narB gene encodes a ferredoxindependent nitrate reductasePlant Mol Biol30845850CrossRefPubMedGoogle Scholar
  91. Rubio, LM, Flores, E, Herrero, A 1998The narA locus of Synechococcus sp strain PCC 7942 consists of a cluster of molybdopterin biosynthesis genes.J Bacteriol 18012001206PubMedGoogle Scholar
  92. Rubio, LM, Flores, E, Herrero, A 1999Molybdopterin guanine dinucleotide cofactor in Synechococcus sp nitrate reductase: identification of mobA and isolation of a putative moeB gene.FEBS Lett462358362CrossRefPubMedGoogle Scholar
  93. Rubio, LM, Flores, E, Herrero, A 2002Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin–nitrate reductasePhotosynth Res721326CrossRefGoogle Scholar
  94. Sakamoto, T, Inoue-Sakamoto, K, Bryant, DA 1999A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp strain PCC 7002.J Bacteriol18173637372PubMedGoogle Scholar
  95. Sazuka, T 2003Proteomic analysis of the cyanobacterium Anabaena sp strain PCC7120 with two-dimensional gel electrophoresis and amino-terminal sequencing.Photosynth Res78279291CrossRefGoogle Scholar
  96. Serrano, A, Rivas, J, Losada, M 1981Nitrate and nitrite as ‘in vivo’ quenchers of chlorophyll fluorescence in blue-green algaePhotosynth Res2175184CrossRefGoogle Scholar
  97. Sivak, MN, Lara, C, Romero, JM, Rodríguez, R, Guerrero, MG 1989Relationship between a 47-kDa cytoplasmic membrane polypeptide and nitrate transport in Anacystis nidulansBiochem Biophys Res Commun158257262CrossRefPubMedGoogle Scholar
  98. Suzuki, I, Sugiyama, T, Omata, T 1993Primary structure and transcriptional regulation of the gene for nitrite reductase from the cyanobacterium Synechococcus PCC 7942Plant Cell Physiol3413111320Google Scholar
  99. Suzuki, I, Kikuchi, H, Nakanishi, S, Fujita, Y, Sugiyama, T, Omata, T 1995aA novel nitrite reductase gene from the cyanobacterium Plectonema boryanumJ Bacteriol17761376143Google Scholar
  100. Suzuki, I, Horie, N, Sugiyama, T, Omata, T 1995bIdentification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp strain PCC7942 required for maximum efficiency of nitrogen assimilation.J Bacteriol177290296Google Scholar
  101. Tanigawa, R, Shirokane, M, Maeda, Si S, Omata, T, Tanaka, K, Takahashi, H 2002Transcriptional activation of NtcA-dependent promoters of Synechococcus sp PCC 7942 by 2-oxoglutarate in vitro.Proc Natl Acad Sci USA9942514255Google Scholar
  102. Tischner, R, Schmidt, A 1984Light mediated regulation of nitrate assimilation in Synechococcus leopoliensisArch Microbiol137151154CrossRefGoogle Scholar
  103. Van, Niel CB 1941The bacterial photosyntheses and their importance for the general problem of photosynthesisAdv Enzymol1263328Google Scholar
  104. Vázquez-Bermúdez, MF, Herrero, A, Flores, E 20022-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoterFEBS Lett5127174CrossRefPubMedGoogle Scholar
  105. Vázquez-Bermúdez, MF, Herrero, A, Flores, E 2003Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp strain PCC 7942.FEMS Microbiol Lett221155159CrossRefPubMedGoogle Scholar
  106. Vega-Palas, MA, Madueño, F, Herrero, A, Flores, E 1990Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp strain PCC 7942.J Bacteriol172643647PubMedGoogle Scholar
  107. Vega-Palas, MA, Flores, E, Herrero, A 1992NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulatorsMol Microbiol618531859PubMedGoogle Scholar
  108. Wang, Q, Li, H, Post, AF 2000Nitrate assimilation genes of the marine diazotrophic, filamentous cyanobacterium Trichodesmium sp strain WH9601.J Bacteriol18217641767CrossRefPubMedGoogle Scholar
  109. Wang, TH, Fu, H, Shieh, YJ 2003Monomeric NarB is a dual-affinity nitrate reductase, and its activity is regulated differently from that of nitrate uptake in the unicellular diazotrophic cyanobacterium Synechococcus sp strain RF-1.J Bacteriol18558385846CrossRefPubMedGoogle Scholar
  110. Warburg, O, Krippahl, G, Jetschmann,  1965Widerlegung der Photolyse des Wassers und Beweis der Photolyse der Kohlensäure nach Versuchen mit lebender Chlorella und den Hill-Reagentien Nitrat und K3Fe(CN)6Z Naturforsch20b993996Google Scholar
  111. Wu, Q, Stewart, V 1998NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5alJ Bacteriol18013111322PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Enrique Flores
    • 1
  • José E. Frías
    • 1
  • Luis M. Rubio
    • 2
  • Antonia Herrero
    • 1
  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisC.S.I.C.-Universidad de SevillaSevillaSpain
  2. 2.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations