Photosynthesis Research

, Volume 83, Issue 1, pp 53–61 | Cite as

Trapping of a long-living charge separated state of photosynthetic reaction centers in proteoliposomes of negatively charged phospholipids

  • Angela Agostiano
  • Francesco Milano
  • Massimo Trotta
Regular paper

Abstract

Reaction centers from the purple bacterium Rhodobacter sphaeroides strain R-26.1 were purified and reconstituted in proteoliposomes formed by the anionic phospholipids phosphatidylglycerol, phosphatidylserine and phosphatidylinositol and by the zwitterionic phospholipid phosphatidylcholine by size-exclusion chromatography in the dark and under illumination. We report the large stabilizing effect induced by anionic phospholipids on the protein charge separated state which results trapped in a long-living (up to tens of minutes) state with a yield up to 80%. This fully reversible state is formed in oxygenic conditions regardless the presence of the secondary quinone QB and its lifetime and relative yield increase at low pH. In proteoliposomes formed with QA-depleted reaction centers (RCs) the resulting protein is very light-sensitive and the long living charge separated state is not observed. The data collected in negatively charged proteoliposomes are discussed in terms of the electrostatic effect on the primary quinone acceptor and compared with similar long living species reported in literature and obtained in anionic, zwitterionic, and non-ionic detergents.

Keywords

long living charge separated state phosphatidylcholine phosphatidylglycerol phosphatidylinositol phosphatidylserine Photosynthetic reaction center proteoliposomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréasson, U, Andréasson, L-E 2003Characterization of a semi-stable, charge-separated state in reaction centers from Rhodobacter sphaeroidesPhotosynth Res75223233CrossRefGoogle Scholar
  2. Andréasson, U, Carlsson, T, Andréasson, L-E 2003Spectroscopic characterization of a semi-stable, charge-separated state in Cu2+ substituted reaction centers from Rhodobacter sphaeroidesBiochim et Biophysica Acta (BBA)–Bioenergetics16074552CrossRefGoogle Scholar
  3. Andrews, KM, Crofts, AR, Gennis, RB 1990Large-scale purification and characterization of a highly active four- subunit cytochrome bc1 complex from Rhodobacter sphaeroidesBiochemistry2926452651CrossRefPubMedGoogle Scholar
  4. Camara-Artigas, A, Brune, D, Allen, JP 2002Interactions between lipids and bacterial reaction centers determined by protein crystallographyProc Natl Acad Sci USA991105511060PubMedGoogle Scholar
  5. el Kebbaj, MS, Latruffe, N 1986Kinetic aspects of the role of phospholipids in D-beta-hydroxybutyrate dehydrogenase activityArch Biochem Biophys244662670CrossRefPubMedGoogle Scholar
  6. el Kebbaj, MS, Latruffe, N, Monsigny, M, Obrenovitch, A 1986Interactions between apo-(D-beta-hydroxybutyrate dehydrogenase) and phospholipids studied by intrinsic and extrinsic fluorescenceBiochem J237359364PubMedGoogle Scholar
  7. Fathir, I, Mori, T, Nogi, T, Kobayashi, M, Miki, K, Nozawa, T 2001Structure of the H subunit of the photosynthetic reaction center from the thermophilic purple sulfur bacterium, Thermochromatium tepidum Implications for the specific binding of the lipid molecule to the membrane protein complexEur J Biochem26826522657CrossRefPubMedGoogle Scholar
  8. Feher, G 1971Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactantsPhotochem Photobiol14373388PubMedGoogle Scholar
  9. Fyfe, PK, Isaacs, NW, Cogdell, RJ, Jones, MR 2004Disruption of a specific molecular interaction with a bound lipid affects the thermal stability of the purple bacterial reaction centreBiochim Biophys Acta Bioenerg16081122CrossRefGoogle Scholar
  10. Gennis, RB 1989Biomembranes: Molecular Structure and FunctionSpringer-VerlagNew YorkGoogle Scholar
  11. Gennis, RB, Jonas, A 1977Protein lipid interactionsAnnu Revi Biophys Bioenerg6195238CrossRefGoogle Scholar
  12. Goushcha, AO, Kharkyanen, VN, Scott, GW, Holzwarth, AR 2000Self-regulation phenomena in bacterial reaction centersI. General theory. Biophys J7912371252Google Scholar
  13. Goushcha, AO, Manzo, AJ,  et al. 2003Self-regulation phenomena applied to bacterial reaction centers: 2 Nonequilibrium adiabatic potential: dark and light conformations revisitedBiophys J84(2 Pt 1)11461160Google Scholar
  14. Goushcha, AO, Manzo, AJ, Kharkyanen, VN, Grondelle, R, Scott, GW 2004Light-induced equilibration kinetics in membrane-bound photosynthetic reaction centers: nonlinear dynamic effects in multiple scattering mediaJ Phys Chem B10827172725CrossRefGoogle Scholar
  15. Imhoff, JF, Bias-Imhoff, U 1995

    Lipids and quinones

    Blankenship, REMadigan, TMBauer, CE eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands179205
    Google Scholar
  16. Imhoff, JF, Kushner, DJ, Kushwaha, SC, Kates, M 1982Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae familiesJ Bacteriol15011921201PubMedGoogle Scholar
  17. Isaacson, RA, Lendzian, F, Abresch, EC, Lubitz, W, Feher, G 1995Electronic structure of QA in reaction centers from Rhodobacter sphaeroides I. Electron paramagnetic resonance in single crystalsBiophys J69311322PubMedGoogle Scholar
  18. Kálmán, L, Maróti, P 1997Conformation-Activated Protonation in Reaction Centers of the Photosynthetic Bacterium Rhodobacter sphaeroidesBiochemistry361526915276CrossRefPubMedGoogle Scholar
  19. Kleinfeld, D, Okamura, MY, Feher, G 1984Electron transfer in reaction centres of Rhodopseudomonas sphaeroides I. Determination of the charge recombination pathway of QAQB and free energy and kinetic relations between QAQB and QAQBBiochim Biophys Acta766126140PubMedGoogle Scholar
  20. Kutuzov MA (1990). Structure-functional studies of the photosynthetic reaction centre of the green thermophilic bacterium Chloroflexus aurantiacus: primary structure, topography and mechanisms of thermal stability. Shemyakin Institute of Bioorganic Chemistry. Moscow, Moscow State University.Google Scholar
  21. Kutuzov, MA, Mamedov, MD, Semenov, A, Shinkarev, VP, Verkhovsky, MI, Abdulaev, NG, Drachev, LA 1991Functioning of quinone acceptors in the reaction center of the green photosynthetic bacterium Chloroflexus aurantiacusFEBS Lett28917982CrossRefPubMedGoogle Scholar
  22. Latruffe, N, Berrez, JM, el Kebbaj, MS 1986Lipid-protein interactions in biomembranes studied through the phospholipid specificity of D-beta-hydroxybutyrate dehydrogenaseBiochimie68481491PubMedGoogle Scholar
  23. McAuley, KE, Fyfe, PK, Ridge, JP, Isaacs, NW, Cogdell, RJ, Jones, MR 1999Structural details of an interaction between cardiolipin and an integral membrane proteinProc Natl Acad Sci USA961470614711PubMedGoogle Scholar
  24. Milano, F, Agostiano, A, Mavelli, F, Trotta, M 2003Kinetics of the Quinone Binding reaction at the QB site of Reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomesEur J Biochem27045954605CrossRefPubMedGoogle Scholar
  25. Mueh, F, Rautter, J, Lubitz, W 1997Two distinct conformations of the primary electron donor in reaction centres from Rhodobacter sphaeroides revealed by ENDOR/TRIPLE-spectroscopyBiochemistry3641554162CrossRefPubMedGoogle Scholar
  26. Nagy, L, Fodor, E, Farkas, T, Gedey, S, Kecskes, A 1998

    Lipids effect the charge stabilisation in wild type and mutant reaction centres of photosynthetic bacteria Rhodobacter sphaeroides

    Garab, G eds. Photosynthesis: Mech Eff. Proc. Int. Congr. Photosynth., 11thKluwer Academic PublishersDordrecht, The Netherlands893896
    Google Scholar
  27. Nagy, L, Fodor, E, Farkas, T, Gedey, S, Kecskes, A 1999Lipids effect the charge stabilisation in wild type and mutant reaction centres of photosynthetic bacteria Rhodobacter sphaeroidesAust J Plant Physiol25465473Google Scholar
  28. Okamura, MY, Isaacson, RA, Feher, G 1975The primary acceptor in bacterial photosynthesis: the obligatory role of ubiquinone in photoactive reaction centres of Rp sphaeroidesProc Natl Acad Sci USA7234913495PubMedGoogle Scholar
  29. Overfield, RE, Wraight, CA 1980Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles 1. Studies with neutral membranesBiochemistry1933223327CrossRefPubMedGoogle Scholar
  30. Palazzo, G, Mallardi, A, Giustini, M, Berti, D, Venturoli, G 2000Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesiclesBiophys J7911711179PubMedGoogle Scholar
  31. Rinyu, L, Martin, EW, Takahashi, E, Maroti, P, Wraight, C 2004Modulation of the free energy of the primary quinone acceptor (QA) in Reaction Centers from Rhodobacter sphaeroides: Contribution from the protein and the protein-lipid (cardiolipin) interactionsBiochim Biophys Acta Bioenerg165593101CrossRefGoogle Scholar
  32. Sandermann, H,Jr 1978Regulation of membrane enzymes by lipidsBiochim Biophys Acta515209237PubMedGoogle Scholar
  33. Sandermann, H,Jr 1982Lipid-dependent membrane enzymes A kinetic model for cooperative activation in the absence of cooperativity in lipid bindingEur J Biochem127123128CrossRefPubMedGoogle Scholar
  34. Sandermann, H,Jr 1983Lipid Solvation and Kinet Cooperativity of Function Membrane proteinsTrends Biol Sci8408411CrossRefGoogle Scholar
  35. Sandermann, H 2002High free energy of lipid/protein interaction in biological membranesFEBS Lett514340342CrossRefPubMedGoogle Scholar
  36. Trotta, M, Milano, F, Nagy, L, Agostiano, A 2002Response of membrane protein to the environment: the case of photosynthetic reaction centreMater Sci Eng C22263267CrossRefGoogle Scholar
  37. RestVan,  M, Gingras, G 1974The Pigment Complement of the Photosynthetic Reaction Center Isolated from Rhodospirillum rubrumJ Biol Chem24964466453PubMedGoogle Scholar
  38. Mourik, F, Reus, M, Holzwarth, AR 2001Long-lived charge-separated states in bacterial reaction centers isolated from Rhodobacter sphaeroidesBiochim Biophys Acta1504311318PubMedGoogle Scholar
  39. Venturoli, G, Trotta, M, Feick, R, Melandri, BA, Zannoni, D 1991Temperature dependence of charge recombination from the P+QA+ abd P+QB states in photosynthetic reaction centres isolated from thermophilic bacterium Chloroflexus aurantiacusEur J Biochem202625634CrossRefPubMedGoogle Scholar
  40. Williams, JC, Haffa, ALM, McCulley, JL, Woodbury, NW, Allen, JP 2001Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroidesBiochemistry401540315407CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Angela Agostiano
    • 1
    • 2
  • Francesco Milano
    • 1
  • Massimo Trotta
    • 1
  1. 1.Istituto per i Processi Chimico-Fisici, Sezione di BariUniversità di BariBariItaly
  2. 2.Dipartimento di ChimicaUniversità di BariBariItaly

Personalised recommendations