Skip to main content

Yield potential of site-specific integrated pest and soil nutrient management at different harvest intervals under two commercial cocoa planting systems in Malaysia

Abstract

Spatio-temporal variability of soil fertility and cocoa pod borer (CPB) infestation rate provides strategic information about the soil nutrients and CPB population densities at different harvest intervals. This enables the transitioning of cocoa fields (cooca-gliricidia and cocoa-coconut) from conventional to modern precision management. Geostatistical methods were applied to interpolate the data collected from a systematic grid based on a cluster of six cocoa tree stands for both fields and produce maps representing the spatial variability of all soil variables and CPB attack. Cocoa fresh bean weight and CPB infestation data were collected at two week-intervals from cocoa-gliricidia and cocoa-coconut. All field data points were geo-referenced by a differential global positioning system. Data were processed for possible outliers, and analysed by variography and interpolation techniques for quantification of spatial variability. Results showed that both plots exhibited definable spatial structures and were described by exponential models. Precision cocoa management recorded an increase in crop yield by 52.8 and 37.5% at cocoa-gliricidia and cocoa-coconut, respectively. Site-specific nutrient management and integrated pest control in the critical zones showed improvement in cocoa yields, especially during the peak harvest season.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data Availability

Not applicable.

References

  • Afolayan, O. S. (2016). Soil–plant properties degradation in aged cocoa farms in Southwest Nigeria. Nigerian Journal of Agriculture, Food and Environment, 12(4), 194–199.

    Google Scholar 

  • Albert, L. S. C., & Azhar, I. (2010). Estimating cocoa wet bean loss caused by cocoa pod borer using bootstrap resampling method. Malaysian Cocoa Journal, 6, 1–12.

    Google Scholar 

  • Arétouyap, Z., NjandjockNouck, P., Nouayou, R., GhomsiKemgang, F. E., PiépoToko, A. D., & Asfahani, J. (2016). Lessening the adverse effect of the semivariogram model selection on an interpolative survey using kriging technique. Springerplus, 5, 1–11.

    Google Scholar 

  • Arshad, F. M., Bala, B. K., Alias, E. F., & Abdulla, I. (2015). Modelling boom and bust of cocoa production systems in Malaysia. Ecological Modelling, 309–310, 22–32.

    Article  Google Scholar 

  • Balasundram, S. K., Husni, M. H. A., & Ahmed, O. H. (2008). Application of geostatistic tools to quantify spatial variability of selected soil chemical properties from a cultivated tropical peat. Journal of Agronomy, 7, 82–87.

    Article  CAS  Google Scholar 

  • Baloch, P. A., Moizuddin, M., Imam, M., Abro, B. A., Lund, J. A., & Solangi, A. H. (2004). Effect of NPK fertilizers and farmyard manure on nut production of coconut (Cocos nucifera L.). Asian Journal of Plant Sciences, 3(1), 91–93.

  • Bellvert, J., Mata, M., Vallverdu, X., Paris, C., & Marsal, J. (2021). Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precision Agriculture, 22, 319–341.

    Article  Google Scholar 

  • Bressan, A., MoralGarcia, F. J., Semetey, O., & Boudon-Padieu, E. (2010). Spatio-temporal pattern of Pentastiridius leporinus migration in an ephemeral cropping system. Agricultural and Forest Entomology, 12(1), 59–68.

    Article  Google Scholar 

  • Cocoa Coconut Institute (CCI) of Papua New Guinea. (2009). The Asian Cocoa Pod Borer (CPB) (Conopomorpha cramerella snellen): A Report on its Containment Within and Eradication from East New Britain Province, Papua New Guinea (March 2006–January 2007). Rabaul, East New Britain, Papua New Guinea.

  • Conant, R. T., & Paustian, K. (2002). Spatial variability of soil organic carbon in grassland: Implications for detecting change at different scales. Environmental Pollution, 116, 127–135.

    Article  Google Scholar 

  • Desavathu, R. N., Nadipena, A. R., & Peddada, J. R. (2018). Assessment of soil fertility status in Paderu Mandal, Visakhapatnam district of Andhra Pradesh through geospatial techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 21, 73–81.

    Article  Google Scholar 

  • Garcia, F. J. M. (2006). Analysis of the spatio-temporal distribution of Helicoverpa armigera Hb in a tomato field using a stochastic approach. Biosystems Engineering, 93, 253–259.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-Size Analysis. In A. Klute (Ed.), Methods of soil analysis, Part 1: Physical and mineralogical methods (pp. 383–411). American Society of Agronomy.

    Google Scholar 

  • Gorai, A. K., & Kumar, S. (2013). Spatial distribution analysis of groundwater quality index using GIS: A case study of Ranchi municipal corporation (RMC) area. Geoinformatics & Geostatistics: An Overview, 1(2), 1–11.

    Google Scholar 

  • Guidotti, D., Ragaglini, G., & Petacchi, R. (2005). Analysis of spatio-temporal Bactroceraoleae (Diptera, Tephritidae) infestation distributions obtained from a large-scale monitoring network and its importance to IPM. IOBC Wprs Bulletin, 28, 13–18.

    Google Scholar 

  • Harini, S., & Fang, Q. (2013). A spatially disaggregated areal interpolation model using light detection and ranging-derived building volumes. Geographical Analysis, 45, 238–258.

    Article  Google Scholar 

  • Heisel, T., Ersbøll, A. K., & Andreasen, C. (1999). Weed mapping with co-kriging using soil properties. Precision Agriculture, 1, 39–52.

    Article  Google Scholar 

  • Ho, A. D., & Yu, C. C. (2015). Descriptive statistics for modern test score distributions: Skewness, kurtosis, discreteness and ceiling effects. Educational and Psychological Measurement, 75(3), 365–388.

    Article  PubMed  Google Scholar 

  • International Cocoa Organization (ICCO). (2013). Growing of cocoa. Retrieved March 26, 2013 from https://www.icco.org/about-cocoa/growing-cocoa.html

  • International Cocoa Organization (ICCO). (2015). Pests and diseases. Retrieved April 10, 2015 from https://www.icco.org/about-cocoa/pest-a-diseases.html

  • Khalid, A. R., Wong, S. K., & Audrey, L. (2009). Competitiveness with sustainable agriculture: Win, lose or draw? International Journal of Economics and Management, 3(1), 87–99.

    Google Scholar 

  • Lee, C. H. (2013). Planting Cocoa-Challenges and Realities, Received from www.ipicex.com/doc1/2012/onral/PlantingCocoa—ChallengesandRealityInMalaysia.pdf

  • Lee, C. H., Kelvin, L., Haya, R., Navies, M., & Saripah, B. (Eds). (2013). Cocoa planting manual. Sustainable cocoa. Malaysian Cocoa Board.

  • Li, H. D., Lin, J., Zhang, J. C., Zhang, X. C., Zhang, L., & Wang, Z. (2008). Spatial variability of soil organic carbon and total nitrogen based on small watershed scale. Journal of Nanjing Forestry University (Natural Sciences Edition), 32, 38–42.

    CAS  Google Scholar 

  • Ling, A., & Ismail, A. (2013). Estimating cocoa wet bean loss caused by cocoa pod borer using bootstrap resampling method. Malaysian Cocoa Journal, 6, 1–12.

    Google Scholar 

  • Liu, D., Wang, Z., Zhang, B., Song, K., Li, X., Li, J., & Duan, H. (2006). Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agriculture, Ecosystems & Environment, 113, 73–81.

    Article  CAS  Google Scholar 

  • Mackey, B. G., Mullen, I. C., Baldwin, K. A., Gallant, J. C., Sims, R. A., & McKenney, D. W. (2000). Towards a spatial model of boreal forest ecosystem; the role of digital terrain analysis. Terrain Analysis—Principles & Applications.

  • Malaysian Cocoa Board (MCB). (2013). Cocoa planting manual. Malaysian Cocoa Board

  • Malaysian Cocoa Board (MCB). (2018). Cocoa Statistics. Retrieved January 7, 2018, from www.koko.gov.my

  • McMahon, P., Purwantara, A., Susilo, A. W., Sukamto, S., Wahab, A., Purung, H., Hidayat, M., Ismail, D., Taproni, T., Lambert, S., Guest, D., & Keane, P. (2010). On-farm selection for quality and resistance to pest/diseases of cocoa in Sulawesi: (ii) quality and performance of selections against Phytophthora pod rot and vascular-streak dieback. International Journal of Pest Management, 56(4), 351–361.

    Article  Google Scholar 

  • Microsoft Corporation. (2003). Microsoft Excel 2003. Microsoft Corporation, Redmond.

  • Mokolobate, M. S., & Haynes, R. J. (2002). Increases in pH and soluble salts influence the effect that additions of organic residues have on concentrations of exchangeable and soil solution aluminium. European Journal of Soil Science, 53(3), 481–489.

    Article  CAS  Google Scholar 

  • Morari, F., Castrignanò, A., & Pagliarin, C. (2009). Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in Agriculture, 69, 97–107.

    Article  Google Scholar 

  • Nay, J. E., Park, Y.-L., & Perring, T. M. (2007). Effect of bunch sanitation on spatial distribution of abscised fruit and phycitine moths (Lepidoptera: Pyralidae) in California date gardens. Journal of Economic Entomology, 100(6), 1773–1780.

    Article  PubMed  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, part 2, chemical and microbiological properties (2nd ed., pp. 403–430). ASA-SSSA.

  • Pereira, G. W., Valente, D. S. M., de Queiroz, D. M., Santos, N. T., & Fernandes-Filho, E. I. (2022). Soil mapping for precision agriculture using support vector machines combined with inverse distance weighting. Precision Agriculture, 23, 1189–1204.

    Article  Google Scholar 

  • Peter, H. D., & Andreas, C. B. (2015). Predicting total nitrogen, total phosphorus, total organic carbon, dissolved oxygen and iron in deep waters of Swedish lakes. Environmental Modeling & Assessment, 20, 411–423.

    Article  Google Scholar 

  • Posada, F. J., Virdiana, I., Navies, M., Pava-Ripoll, M., & Hebbar, P. (2011). Sexual dimorphism of pupae and adults of the cocoa pod borer, Conopomorpha cramerella. Journal of Insect Science, 11, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangita, P. I., & Smita, S. T. (2016). Review on toxicity assessment for carcinogenic soil contaminants. The Pharmaceutical and Chemical Journal, 3(2), 139–144.

    Google Scholar 

  • Sani, Y., & Jibril, E. (2010). A comparative study of nutrient cycling on soils under Daniella oliveri and Chromolaena odorata in the federal capital territory, Abuja, Nigeria. American Journal of Scientific Research, 10, 26–33.

    Google Scholar 

  • Saripah, B. (2019). Infestations of two major pests of cocoa, Conopomorpha cramerella and Helopeltis spp. under natural condition. Pelita Perkebunan, 35(3), 186–192.

  • Saripah, B., & Alias, A. (2016). Evaluation of best management practices for cocoa pod borer in cocoa ecosystem. Malaysian Cocoa Journal, 9(1), 108–120.

    Google Scholar 

  • Saripah, B., & Azhar, I. (2007). Implementation of cocoa pod sleeving in controlling cocoa pod borer infestation. In Proceedings of conference on plant plantation commodities, 3–4 July 2007, Kuala Lumpur, Malaysia (pp. 221–227).

  • SAS Institute. (2002). Statistical Analysis System (SAS) Institute (2002) SAS/STAT User’s Guide. Version 8, 6th Edition, SAS Institute, Cary, 112.

  • Skjemstad, J., & Baldock, J. A. (2008). Total and organic carbon. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 225–238). Soil Science Society of Canada.

    Google Scholar 

  • Snoeck, D., Koko, L., Joffre, J., Bastide, P., & Jagoret, P. (2016). Cacao nutrition and fertilization. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (pp. 155–202). Springer.

    Chapter  Google Scholar 

  • Stacey, K. F., Lark, R. M., Whitmore, A. P., & Milne, A. E. (2006). Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil. Geoderma, 135, 107–117.

    Article  CAS  Google Scholar 

  • Su, B., Zhao, G., & Dong, C. (2018). Spatiotemporal variability of soil nutrients and the responses of growth during growth stages of winter wheat in northern China. PLoS ONE, 13(12), e0203509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, G. W. (1982). Exchangeable Cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2 (pp. 159–165). ASA-SSSA.

  • Wang, H., Hall, C. A. S., Cornell, J. D., & Hall, M. H. P. (2002). Spatial dependence and the relationship of soil organic carbon and soil moisture in the luquillo experimental forest, Puerto Rico. Landscape of Ecology, 17, 671–684.

    Article  Google Scholar 

  • Wang, Y. Q., & Shao, M. A. (2013). Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation Development, 24(3), 296–304.

    Article  Google Scholar 

  • Wessel, M., & Quist-Wessel, P. M. F. (2015). Cocoa production in West Africa, a review and analysis of recent developments. Journal of Life Sciences, 74–75, 1–7.

    Google Scholar 

  • Zhao, J., Liu, H. J., Sui, Y. Y., Zhang, X. Y., & Meng, K. (2006). Analysis for spatial heterogeneity of organic matter content and available nutrients in blacksoil crop area with different scales. Journal of Soil and Water Conservation, 20, 41–45.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was part of the program entitled ‘Integration of cocoa with other commodities and pilot-plot of precision farming’ (P20001001116002) and was funded by the 11th Malaysia Plan, Economic Planning Unit, Prime Minister’s Department. We gratefully thank the Ministry of Plantation Industries and Commodities (MPIC) for their long-term support. Special thanks to the Director General of Malaysian Cocoa Board and the Director of Cocoa Upstream Technology, Malaysian Cocoa Board for their kind approval in publishing the findings of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Balasundram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tee, Y.K., Balasundram, S.K., Shamshiri, R.R. et al. Yield potential of site-specific integrated pest and soil nutrient management at different harvest intervals under two commercial cocoa planting systems in Malaysia. Precision Agric 24, 1132–1153 (2023). https://doi.org/10.1007/s11119-023-10003-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10003-1

Keywords