Skip to main content

Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images


Accurate and timely assessment of crop water status is imperative for in-season irrigation scheduling in crop production. The canopy water stress index and water deficit index have been widely used to appraise crop water status using spatial thermal images. However, the inter-relationships of CWSI, WDI and crop nitrogen status have been rarely investigated. Therefore, the present study was conducted to compare the differences between the CWSI and WDI values of winter wheat across different N and irrigation treatments, to examine the effect of crop N status on CWSI and WDI, and to recalibrate the CWSI and WDI values for better assessment of water status in winter wheat using nitrogen nutrition index. The result demonstrated that CWSI and WDI values decreased with the increasing irrigation rates within the same N treatments. However, both indices could not be used for assessing plant water status under different N treatments at the same I treatments. The increase in CWSI and WDI values with decreasing N rates indicated that there is a significant effect of plant N status on CWSI and WDI values. The pure canopy foliage temperature and mixed soil canopy temperature showed a significantly negative relationship with NNI across different N treatments. The recalibrated Tc and Ts values were lower than the original values under the N-limiting treatments. Using the recalibrated Tc and Ts value, the CWSI and WDI values were recalculated, which can better signify plant water status under different N conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Ata-Ul-Karim, S. T., Zhu, Y., Cao, Q., Rehmani, M. I. A., Cao, W. X., & Tang, L. (2017). In-season assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. European Journal of Agronomy, 90, 139–151.

    CAS  Article  Google Scholar 

  2. Ata-Ul-Karim, S.T., Cang, L., Wang, Y.J., & Zhou, D.M. (2020a). Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat (Triticum aestivum L.) grain. Geoderma, 357(1), 113923.

  3. Ata-Ul-Karim, S.T., Cang, L., Wang, Y.J., & Zhou, D.M. (2020b). Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat. Journal of Hazardous Materials, 384, 121452.

  4. Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 30(6), 511–522.

    Article  Google Scholar 

  5. Cabrera-Bosquet, L., Molero, G., Bort, J., Nogues, S., & Araus, J. L. (2007). The combined effect of constant water deficit and nitrogen supply on WUE, NUE and ΔC-13 in durum wheat potted plants. Annals of Applied Biology, 151(3), 277–289.

    CAS  Article  Google Scholar 

  6. Chen, Z. C., Miao, Y. X., Lu, J. J., Zhou, L., Li, Y., Zhang, H. Y., Lou, W. D., Zhang, Z., Kusnierek, K., & Liu, C. H. (2019). In-season diagnosis of winter wheat nitrogen status in smallholder farmer fields across a village using unmanned aerial vehicle-based remote sensing. Agronomy, 9(10), 619.

    Article  Google Scholar 

  7. DeJonge, K. C., Taghvaeian, S., Trout, T. J., & Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agriculture Water Management, 156, 51–62.

    Article  Google Scholar 

  8. Dordas, C. A. (2017). Chlorophyll meter readings, N leaf concentration and their relationship with N use efficiency in oregano. Journal of Plant Nutrition, 40, 391–403.

    CAS  Article  Google Scholar 

  9. González-Dugo, M. P., Moran, M. S., Mateos, L., & Bryant, R. (2006). Canopy temperature variability as an indicator of crop water stress severity. Irrigation Science, 24(4), 233–240.

    Article  Google Scholar 

  10. González-Duago, V., Lopez-Lopez, M., Espadafor, M., Orgaz, F., Testi, L., Zarco-Tejada, P., Lorite, I. L., & Fereres, E. (2019). Transpiration from canopy temperature: Implications for the assessment of crop yield in almond orchards. European Journal of Agronomy, 105(3), 78–85.

    Article  Google Scholar 

  11. Hu, D. W., Sun, Z. P., Li, T. L., Yan, H. Z., & Zhang, H. (2014). Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. Journal of Integrative Agriculture, 13(5), 1008–1016.

    Article  Google Scholar 

  12. Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resource Research, 17(4), 1133–1138.

    Article  Google Scholar 

  13. Jiang, T.C., Dou, Z.H., Liu, J., Gao, Y.J., Malone, R.W., Chen, S., Feng, H., Yu, Q., Xue, G.N., & He, J.Q. (2020). Simulating the influences of soil water stress on leaf expansion and senescence of winter wheat. Agriculture Forest Meteorology, 291, 108061.

  14. Justes, E., Mary, B., Meynard, J. M., Machet, J. M., & Thelier-Huche, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 74(4), 397–407.

    CAS  Article  Google Scholar 

  15. Lemaire, G., van Oosterom, E., Sheehy, J., Jeuffffroy, M. H., Massignam, A., & Rossato, L. (2007). Is crop demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Research, 100(1), 91–106.

    Article  Google Scholar 

  16. Lemaire, G., Jeuffroy, M. H., & Grancois, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624.

    CAS  Article  Google Scholar 

  17. Large, E.C. (1954). Growth Stages in Cereals. Illustrations of the Feekes scale. Plant Pathology, 3(4), 128–129.

  18. Li, L., Nielsen, D. C., Yu, Q., Ma, L., & Ahuja, L. R. (2010a). Evaluating the crop water stress index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain. Agriculture Water Management, 97(8), 1146–1155.

    Article  Google Scholar 

  19. Li, Y., Chen, D., Walker, C. N., & Angus, J. F. (2010b). Estimating the nitrogen status of crops using a digital camera. Field Crops Research, 118(3), 221–227.

    Article  Google Scholar 

  20. Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2), 282–293.

    Article  Google Scholar 

  21. Méndez-Barroso, L. A., Garatuza-Payan, J., & Vivoni, E. R. (2008). Quantifying water stress on wheat using remote sensing in the Yaqui valley, Sonora Mexico. Agriculture Water Management, 95(6), 725–736.

    Article  Google Scholar 

  22. Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246–263.

    Article  Google Scholar 

  23. Ouyang, W. J., Struik, P. C., Yin, X. Y., & Yang, J. C. (2017). Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experiment Botany, 68(18), 5191–5205.

    CAS  Article  Google Scholar 

  24. O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D., & Howell, T. A. (2012). A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agriculture Water Management, 107, 122–132.

    Article  Google Scholar 

  25. Ren, A. X., Sun, M., Wang, P. R., Xue, L. Z., Lei, M. M., Xue, J. F., Gao, Z. Q., & Yang, Z. P. (2019). Optimization of sowing date and seeding rate ofr high winter wheat yield based on pre–winter plant development and soil water usage in the Loess Plateau China. Journal of Integrative Agriculture, 18(1), 33–42.

    Article  Google Scholar 

  26. Sun, S. K., Wang, Y. B., Liu, J., Cai, H. J., Wu, P. T., Geng, Q. L., & Xu, L. J. (2016). Sustainability assessment of regional water resources under the DPSIR framework. Journal of Hydrology, 532, 140–148.

    Article  Google Scholar 

  27. Tilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., & Belford, R. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104(1), 77–85.

    Article  Google Scholar 

  28. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue and lighting conditions. Transactions of the ASAE, 38(1), 259–269.

    Article  Google Scholar 

  29. Wollmer, A. C., Pitann, B., & Mühling, K. H. (2018). Grain storage protein concentration and composition of winter wheat (Triticum aestivum L.) as affected by waterlogging events during stem elongation or ear emergence. Journal of Cereal Science, 83, 9–15.

    CAS  Article  Google Scholar 

  30. Yao, N., Li, Y., Xu, F., Liu, J., Chen, S., Ma, H.J., Chau, H.W., Liu, D.L., Feng, H., Yu, Q., & He, J.Q. (2020). Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions. Agriculture Water Management, 229, 105954.

  31. Yuan, G. F., Luo, Y., Sun, X. M., & Tang, D. Y. (2004). Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agriculture Water Management, 64(1), 29–40.

    Article  Google Scholar 

  32. Zhang, T., Hou, M.J., Liu, L., & Tian, F. (2019). Estimation of transpiration and canopy cover of winter wheat under different fertilization levels using thermal infrared and visible imagery. Computers and Electronics in Agriculture, 165, 104936.

  33. Zhao, B., Yao, X., Tian, Y., Liu, X., Ata-Ul-Karim, S. T., Ni, J., Cao, W. X., & Zhu, Y. (2014). New critical nitrogen curve based on leaf area index for winter wheat. Agronomy Journal, 106, 379–389.

    Article  Google Scholar 

  34. Zhao, B., Niu, X.L., Ata-Ul-Karim., S.T., Wang, L.G., Duan, A.W., Liu, Z.D., & Lemaire, G. (2020). Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. European Journal of Agronomy, 113. 125967.

  35. Zhao, C., Luo, Y., Yuan, G. F., & Yu, Q. (2001). Primary investigation on the relationship between the crop water stress index and the soil moisture. Chinese Journal of Eco-Agriculture, 9(1), 34–36.

    Google Scholar 

  36. Zhang, H. D., Wang, L. Q., Tian, T., & Yin, J. H. (2021). A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sensing, 13(6), 1221.

    Article  Google Scholar 

Download references


This study was supported by the National Natural Science Foundation of China (51609247, 41601213), the Science and Technology Project of Henan Province (212102110278), Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (18KT0087), the China Agriculture Research System (CARS-02, CARS-3-1-30), Distinguished Young Scholars from Henan Academy of Agricultural Sciences (2021JQ02).

Author information



Corresponding authors

Correspondence to Ben Zhao or Aiwang Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Adama, T., Ata-Ul-Karim, S.T. et al. Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images. Precision Agric (2021).

Download citation


  • Winter wheat
  • Plant water status
  • Nitrogen nutrition index
  • Thermal image